Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psrmulfval | Structured version Visualization version GIF version |
Description: The multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) |
Ref | Expression |
---|---|
psrmulr.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
psrmulr.b | ⊢ 𝐵 = (Base‘𝑆) |
psrmulr.m | ⊢ · = (.r‘𝑅) |
psrmulr.t | ⊢ ∙ = (.r‘𝑆) |
psrmulr.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
psrmulfval.i | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
psrmulfval.r | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
Ref | Expression |
---|---|
psrmulfval | ⊢ (𝜑 → (𝐹 ∙ 𝐺) = (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝐹‘𝑥) · (𝐺‘(𝑘 ∘f − 𝑥))))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psrmulfval.i | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
2 | psrmulfval.r | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
3 | fveq1 6782 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) | |
4 | fveq1 6782 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (𝑔‘(𝑘 ∘f − 𝑥)) = (𝐺‘(𝑘 ∘f − 𝑥))) | |
5 | 3, 4 | oveqan12d 7303 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘f − 𝑥))) = ((𝐹‘𝑥) · (𝐺‘(𝑘 ∘f − 𝑥)))) |
6 | 5 | mpteq2dv 5177 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘f − 𝑥)))) = (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝐹‘𝑥) · (𝐺‘(𝑘 ∘f − 𝑥))))) |
7 | 6 | oveq2d 7300 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘f − 𝑥))))) = (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝐹‘𝑥) · (𝐺‘(𝑘 ∘f − 𝑥)))))) |
8 | 7 | mpteq2dv 5177 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘f − 𝑥)))))) = (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝐹‘𝑥) · (𝐺‘(𝑘 ∘f − 𝑥))))))) |
9 | psrmulr.s | . . . 4 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
10 | psrmulr.b | . . . 4 ⊢ 𝐵 = (Base‘𝑆) | |
11 | psrmulr.m | . . . 4 ⊢ · = (.r‘𝑅) | |
12 | psrmulr.t | . . . 4 ⊢ ∙ = (.r‘𝑆) | |
13 | psrmulr.d | . . . 4 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
14 | 9, 10, 11, 12, 13 | psrmulr 21162 | . . 3 ⊢ ∙ = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘f − 𝑥))))))) |
15 | ovex 7317 | . . . . 5 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
16 | 13, 15 | rabex2 5259 | . . . 4 ⊢ 𝐷 ∈ V |
17 | 16 | mptex 7108 | . . 3 ⊢ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝐹‘𝑥) · (𝐺‘(𝑘 ∘f − 𝑥)))))) ∈ V |
18 | 8, 14, 17 | ovmpoa 7437 | . 2 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 ∙ 𝐺) = (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝐹‘𝑥) · (𝐺‘(𝑘 ∘f − 𝑥))))))) |
19 | 1, 2, 18 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐹 ∙ 𝐺) = (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝐹‘𝑥) · (𝐺‘(𝑘 ∘f − 𝑥))))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2107 {crab 3069 class class class wbr 5075 ↦ cmpt 5158 ◡ccnv 5589 “ cima 5593 ‘cfv 6437 (class class class)co 7284 ∘f cof 7540 ∘r cofr 7541 ↑m cmap 8624 Fincfn 8742 ≤ cle 11019 − cmin 11214 ℕcn 11982 ℕ0cn0 12242 Basecbs 16921 .rcmulr 16972 Σg cgsu 17160 mPwSer cmps 21116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-rep 5210 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-cnex 10936 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 ax-pre-mulgt0 10957 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-tp 4567 df-op 4569 df-uni 4841 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-of 7542 df-om 7722 df-1st 7840 df-2nd 7841 df-supp 7987 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-1o 8306 df-er 8507 df-map 8626 df-en 8743 df-dom 8744 df-sdom 8745 df-fin 8746 df-fsupp 9138 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-sub 11216 df-neg 11217 df-nn 11983 df-2 12045 df-3 12046 df-4 12047 df-5 12048 df-6 12049 df-7 12050 df-8 12051 df-9 12052 df-n0 12243 df-z 12329 df-uz 12592 df-fz 13249 df-struct 16857 df-slot 16892 df-ndx 16904 df-base 16922 df-plusg 16984 df-mulr 16985 df-sca 16987 df-vsca 16988 df-tset 16990 df-psr 21121 |
This theorem is referenced by: psrmulval 21164 psrmulcllem 21165 psrdi 21184 psrdir 21185 psrass23l 21186 psrcom 21187 psrass23 21188 resspsrmul 21195 mplmul 21224 psropprmul 21418 coe1mul2 21449 |
Copyright terms: Public domain | W3C validator |