MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrmulfval Structured version   Visualization version   GIF version

Theorem psrmulfval 20623
Description: The multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.)
Hypotheses
Ref Expression
psrmulr.s 𝑆 = (𝐼 mPwSer 𝑅)
psrmulr.b 𝐵 = (Base‘𝑆)
psrmulr.m · = (.r𝑅)
psrmulr.t = (.r𝑆)
psrmulr.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
psrmulfval.i (𝜑𝐹𝐵)
psrmulfval.r (𝜑𝐺𝐵)
Assertion
Ref Expression
psrmulfval (𝜑 → (𝐹 𝐺) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝐹𝑥) · (𝐺‘(𝑘f𝑥)))))))
Distinct variable groups:   𝑥,𝑘,𝐵   𝑦,𝑘,𝐷,𝑥   ,𝑘,𝑥,𝑦,𝐼   𝜑,𝑘,𝑥   𝑘,𝐹,𝑥   𝑘,𝐺,𝑥   · ,𝑘,𝑥   𝑅,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑦,)   𝐵(𝑦,)   𝐷()   𝑅(𝑦,)   𝑆(𝑥,𝑦,,𝑘)   (𝑥,𝑦,,𝑘)   · (𝑦,)   𝐹(𝑦,)   𝐺(𝑦,)

Proof of Theorem psrmulfval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrmulfval.i . 2 (𝜑𝐹𝐵)
2 psrmulfval.r . 2 (𝜑𝐺𝐵)
3 fveq1 6644 . . . . . . 7 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
4 fveq1 6644 . . . . . . 7 (𝑔 = 𝐺 → (𝑔‘(𝑘f𝑥)) = (𝐺‘(𝑘f𝑥)))
53, 4oveqan12d 7154 . . . . . 6 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓𝑥) · (𝑔‘(𝑘f𝑥))) = ((𝐹𝑥) · (𝐺‘(𝑘f𝑥))))
65mpteq2dv 5126 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝐹𝑥) · (𝐺‘(𝑘f𝑥)))))
76oveq2d 7151 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘f𝑥))))) = (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝐹𝑥) · (𝐺‘(𝑘f𝑥))))))
87mpteq2dv 5126 . . 3 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘f𝑥)))))) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝐹𝑥) · (𝐺‘(𝑘f𝑥)))))))
9 psrmulr.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
10 psrmulr.b . . . 4 𝐵 = (Base‘𝑆)
11 psrmulr.m . . . 4 · = (.r𝑅)
12 psrmulr.t . . . 4 = (.r𝑆)
13 psrmulr.d . . . 4 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
149, 10, 11, 12, 13psrmulr 20622 . . 3 = (𝑓𝐵, 𝑔𝐵 ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘f𝑥)))))))
15 ovex 7168 . . . . 5 (ℕ0m 𝐼) ∈ V
1613, 15rabex2 5201 . . . 4 𝐷 ∈ V
1716mptex 6963 . . 3 (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝐹𝑥) · (𝐺‘(𝑘f𝑥)))))) ∈ V
188, 14, 17ovmpoa 7284 . 2 ((𝐹𝐵𝐺𝐵) → (𝐹 𝐺) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝐹𝑥) · (𝐺‘(𝑘f𝑥)))))))
191, 2, 18syl2anc 587 1 (𝜑 → (𝐹 𝐺) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝐹𝑥) · (𝐺‘(𝑘f𝑥)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  {crab 3110   class class class wbr 5030  cmpt 5110  ccnv 5518  cima 5522  cfv 6324  (class class class)co 7135  f cof 7387  r cofr 7388  m cmap 8389  Fincfn 8492  cle 10665  cmin 10859  cn 11625  0cn0 11885  Basecbs 16475  .rcmulr 16558   Σg cgsu 16706   mPwSer cmps 20589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-tset 16576  df-psr 20594
This theorem is referenced by:  psrmulval  20624  psrmulcllem  20625  psrdi  20644  psrdir  20645  psrass23l  20646  psrcom  20647  psrass23  20648  resspsrmul  20655  mplmul  20682  psropprmul  20867  coe1mul2  20898
  Copyright terms: Public domain W3C validator