![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psrmulfval | Structured version Visualization version GIF version |
Description: The multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) |
Ref | Expression |
---|---|
psrmulr.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
psrmulr.b | ⊢ 𝐵 = (Base‘𝑆) |
psrmulr.m | ⊢ · = (.r‘𝑅) |
psrmulr.t | ⊢ ∙ = (.r‘𝑆) |
psrmulr.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
psrmulfval.i | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
psrmulfval.r | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
Ref | Expression |
---|---|
psrmulfval | ⊢ (𝜑 → (𝐹 ∙ 𝐺) = (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝐹‘𝑥) · (𝐺‘(𝑘 ∘f − 𝑥))))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psrmulfval.i | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
2 | psrmulfval.r | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
3 | fveq1 6900 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) | |
4 | fveq1 6900 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (𝑔‘(𝑘 ∘f − 𝑥)) = (𝐺‘(𝑘 ∘f − 𝑥))) | |
5 | 3, 4 | oveqan12d 7443 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘f − 𝑥))) = ((𝐹‘𝑥) · (𝐺‘(𝑘 ∘f − 𝑥)))) |
6 | 5 | mpteq2dv 5255 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘f − 𝑥)))) = (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝐹‘𝑥) · (𝐺‘(𝑘 ∘f − 𝑥))))) |
7 | 6 | oveq2d 7440 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘f − 𝑥))))) = (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝐹‘𝑥) · (𝐺‘(𝑘 ∘f − 𝑥)))))) |
8 | 7 | mpteq2dv 5255 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘f − 𝑥)))))) = (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝐹‘𝑥) · (𝐺‘(𝑘 ∘f − 𝑥))))))) |
9 | psrmulr.s | . . . 4 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
10 | psrmulr.b | . . . 4 ⊢ 𝐵 = (Base‘𝑆) | |
11 | psrmulr.m | . . . 4 ⊢ · = (.r‘𝑅) | |
12 | psrmulr.t | . . . 4 ⊢ ∙ = (.r‘𝑆) | |
13 | psrmulr.d | . . . 4 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
14 | 9, 10, 11, 12, 13 | psrmulr 21951 | . . 3 ⊢ ∙ = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘f − 𝑥))))))) |
15 | ovex 7457 | . . . . 5 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
16 | 13, 15 | rabex2 5341 | . . . 4 ⊢ 𝐷 ∈ V |
17 | 16 | mptex 7240 | . . 3 ⊢ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝐹‘𝑥) · (𝐺‘(𝑘 ∘f − 𝑥)))))) ∈ V |
18 | 8, 14, 17 | ovmpoa 7581 | . 2 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 ∙ 𝐺) = (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝐹‘𝑥) · (𝐺‘(𝑘 ∘f − 𝑥))))))) |
19 | 1, 2, 18 | syl2anc 582 | 1 ⊢ (𝜑 → (𝐹 ∙ 𝐺) = (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝐹‘𝑥) · (𝐺‘(𝑘 ∘f − 𝑥))))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 {crab 3419 class class class wbr 5153 ↦ cmpt 5236 ◡ccnv 5681 “ cima 5685 ‘cfv 6554 (class class class)co 7424 ∘f cof 7688 ∘r cofr 7689 ↑m cmap 8855 Fincfn 8974 ≤ cle 11299 − cmin 11494 ℕcn 12264 ℕ0cn0 12524 Basecbs 17213 .rcmulr 17267 Σg cgsu 17455 mPwSer cmps 21901 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-of 7690 df-om 7877 df-1st 8003 df-2nd 8004 df-supp 8175 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-er 8734 df-map 8857 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-fsupp 9406 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12611 df-uz 12875 df-fz 13539 df-struct 17149 df-slot 17184 df-ndx 17196 df-base 17214 df-plusg 17279 df-mulr 17280 df-sca 17282 df-vsca 17283 df-tset 17285 df-psr 21906 |
This theorem is referenced by: psrmulval 21953 psrmulcllem 21954 psrdi 21974 psrdir 21975 psrass23l 21976 psrcom 21977 psrass23 21978 resspsrmul 21985 mplmul 22020 psropprmul 22227 coe1mul2 22260 rhmcomulpsr 42023 |
Copyright terms: Public domain | W3C validator |