Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrmulfval Structured version   Visualization version   GIF version

Theorem psrmulfval 20621
 Description: The multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.)
Hypotheses
Ref Expression
psrmulr.s 𝑆 = (𝐼 mPwSer 𝑅)
psrmulr.b 𝐵 = (Base‘𝑆)
psrmulr.m · = (.r𝑅)
psrmulr.t = (.r𝑆)
psrmulr.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
psrmulfval.i (𝜑𝐹𝐵)
psrmulfval.r (𝜑𝐺𝐵)
Assertion
Ref Expression
psrmulfval (𝜑 → (𝐹 𝐺) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝐹𝑥) · (𝐺‘(𝑘f𝑥)))))))
Distinct variable groups:   𝑥,𝑘,𝐵   𝑦,𝑘,𝐷,𝑥   ,𝑘,𝑥,𝑦,𝐼   𝜑,𝑘,𝑥   𝑘,𝐹,𝑥   𝑘,𝐺,𝑥   · ,𝑘,𝑥   𝑅,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑦,)   𝐵(𝑦,)   𝐷()   𝑅(𝑦,)   𝑆(𝑥,𝑦,,𝑘)   (𝑥,𝑦,,𝑘)   · (𝑦,)   𝐹(𝑦,)   𝐺(𝑦,)

Proof of Theorem psrmulfval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrmulfval.i . 2 (𝜑𝐹𝐵)
2 psrmulfval.r . 2 (𝜑𝐺𝐵)
3 fveq1 6651 . . . . . . 7 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
4 fveq1 6651 . . . . . . 7 (𝑔 = 𝐺 → (𝑔‘(𝑘f𝑥)) = (𝐺‘(𝑘f𝑥)))
53, 4oveqan12d 7159 . . . . . 6 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓𝑥) · (𝑔‘(𝑘f𝑥))) = ((𝐹𝑥) · (𝐺‘(𝑘f𝑥))))
65mpteq2dv 5138 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝐹𝑥) · (𝐺‘(𝑘f𝑥)))))
76oveq2d 7156 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘f𝑥))))) = (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝐹𝑥) · (𝐺‘(𝑘f𝑥))))))
87mpteq2dv 5138 . . 3 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘f𝑥)))))) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝐹𝑥) · (𝐺‘(𝑘f𝑥)))))))
9 psrmulr.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
10 psrmulr.b . . . 4 𝐵 = (Base‘𝑆)
11 psrmulr.m . . . 4 · = (.r𝑅)
12 psrmulr.t . . . 4 = (.r𝑆)
13 psrmulr.d . . . 4 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
149, 10, 11, 12, 13psrmulr 20620 . . 3 = (𝑓𝐵, 𝑔𝐵 ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘f𝑥)))))))
15 ovex 7173 . . . . 5 (ℕ0m 𝐼) ∈ V
1613, 15rabex2 5213 . . . 4 𝐷 ∈ V
1716mptex 6968 . . 3 (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝐹𝑥) · (𝐺‘(𝑘f𝑥)))))) ∈ V
188, 14, 17ovmpoa 7289 . 2 ((𝐹𝐵𝐺𝐵) → (𝐹 𝐺) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝐹𝑥) · (𝐺‘(𝑘f𝑥)))))))
191, 2, 18syl2anc 587 1 (𝜑 → (𝐹 𝐺) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝐹𝑥) · (𝐺‘(𝑘f𝑥)))))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2114  {crab 3134   class class class wbr 5042   ↦ cmpt 5122  ◡ccnv 5531   “ cima 5535  ‘cfv 6334  (class class class)co 7140   ∘f cof 7392   ∘r cofr 7393   ↑m cmap 8393  Fincfn 8496   ≤ cle 10665   − cmin 10859  ℕcn 11625  ℕ0cn0 11885  Basecbs 16474  .rcmulr 16557   Σg cgsu 16705   mPwSer cmps 20587 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-of 7394  df-om 7566  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-struct 16476  df-ndx 16477  df-slot 16478  df-base 16480  df-plusg 16569  df-mulr 16570  df-sca 16572  df-vsca 16573  df-tset 16575  df-psr 20592 This theorem is referenced by:  psrmulval  20622  psrmulcllem  20623  psrdi  20642  psrdir  20643  psrass23l  20644  psrcom  20645  psrass23  20646  resspsrmul  20653  mplmul  20680  psropprmul  20865  coe1mul2  20896
 Copyright terms: Public domain W3C validator