MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrmulfval Structured version   Visualization version   GIF version

Theorem psrmulfval 20164
Description: The multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.)
Hypotheses
Ref Expression
psrmulr.s 𝑆 = (𝐼 mPwSer 𝑅)
psrmulr.b 𝐵 = (Base‘𝑆)
psrmulr.m · = (.r𝑅)
psrmulr.t = (.r𝑆)
psrmulr.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
psrmulfval.i (𝜑𝐹𝐵)
psrmulfval.r (𝜑𝐺𝐵)
Assertion
Ref Expression
psrmulfval (𝜑 → (𝐹 𝐺) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝐹𝑥) · (𝐺‘(𝑘f𝑥)))))))
Distinct variable groups:   𝑥,𝑘,𝐵   𝑦,𝑘,𝐷,𝑥   ,𝑘,𝑥,𝑦,𝐼   𝜑,𝑘,𝑥   𝑘,𝐹,𝑥   𝑘,𝐺,𝑥   · ,𝑘,𝑥   𝑅,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑦,)   𝐵(𝑦,)   𝐷()   𝑅(𝑦,)   𝑆(𝑥,𝑦,,𝑘)   (𝑥,𝑦,,𝑘)   · (𝑦,)   𝐹(𝑦,)   𝐺(𝑦,)

Proof of Theorem psrmulfval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrmulfval.i . 2 (𝜑𝐹𝐵)
2 psrmulfval.r . 2 (𝜑𝐺𝐵)
3 fveq1 6668 . . . . . . 7 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
4 fveq1 6668 . . . . . . 7 (𝑔 = 𝐺 → (𝑔‘(𝑘f𝑥)) = (𝐺‘(𝑘f𝑥)))
53, 4oveqan12d 7174 . . . . . 6 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓𝑥) · (𝑔‘(𝑘f𝑥))) = ((𝐹𝑥) · (𝐺‘(𝑘f𝑥))))
65mpteq2dv 5161 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝐹𝑥) · (𝐺‘(𝑘f𝑥)))))
76oveq2d 7171 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘f𝑥))))) = (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝐹𝑥) · (𝐺‘(𝑘f𝑥))))))
87mpteq2dv 5161 . . 3 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘f𝑥)))))) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝐹𝑥) · (𝐺‘(𝑘f𝑥)))))))
9 psrmulr.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
10 psrmulr.b . . . 4 𝐵 = (Base‘𝑆)
11 psrmulr.m . . . 4 · = (.r𝑅)
12 psrmulr.t . . . 4 = (.r𝑆)
13 psrmulr.d . . . 4 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
149, 10, 11, 12, 13psrmulr 20163 . . 3 = (𝑓𝐵, 𝑔𝐵 ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘f𝑥)))))))
15 ovex 7188 . . . . 5 (ℕ0m 𝐼) ∈ V
1613, 15rabex2 5236 . . . 4 𝐷 ∈ V
1716mptex 6985 . . 3 (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝐹𝑥) · (𝐺‘(𝑘f𝑥)))))) ∈ V
188, 14, 17ovmpoa 7304 . 2 ((𝐹𝐵𝐺𝐵) → (𝐹 𝐺) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝐹𝑥) · (𝐺‘(𝑘f𝑥)))))))
191, 2, 18syl2anc 586 1 (𝜑 → (𝐹 𝐺) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝐹𝑥) · (𝐺‘(𝑘f𝑥)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  {crab 3142   class class class wbr 5065  cmpt 5145  ccnv 5553  cima 5557  cfv 6354  (class class class)co 7155  f cof 7406  r cofr 7407  m cmap 8405  Fincfn 8508  cle 10675  cmin 10869  cn 11637  0cn0 11896  Basecbs 16482  .rcmulr 16565   Σg cgsu 16713   mPwSer cmps 20130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-om 7580  df-1st 7688  df-2nd 7689  df-supp 7830  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fsupp 8833  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-uz 12243  df-fz 12892  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-plusg 16577  df-mulr 16578  df-sca 16580  df-vsca 16581  df-tset 16583  df-psr 20135
This theorem is referenced by:  psrmulval  20165  psrmulcllem  20166  psrdi  20185  psrdir  20186  psrass23l  20187  psrcom  20188  psrass23  20189  resspsrmul  20196  mplmul  20222  psropprmul  20405  coe1mul2  20436
  Copyright terms: Public domain W3C validator