MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplmon Structured version   Visualization version   GIF version

Theorem mplmon 20703
Description: A monomial is a polynomial. (Contributed by Mario Carneiro, 9-Jan-2015.)
Hypotheses
Ref Expression
mplmon.s 𝑃 = (𝐼 mPoly 𝑅)
mplmon.b 𝐵 = (Base‘𝑃)
mplmon.z 0 = (0g𝑅)
mplmon.o 1 = (1r𝑅)
mplmon.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mplmon.i (𝜑𝐼𝑊)
mplmon.r (𝜑𝑅 ∈ Ring)
mplmon.x (𝜑𝑋𝐷)
Assertion
Ref Expression
mplmon (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ 𝐵)
Distinct variable groups:   𝑦,𝐷   𝑓,𝐼   𝜑,𝑦   𝑦,𝑓,𝑋   𝑦, 0   𝑦, 1   𝑦,𝑅
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑦,𝑓)   𝐷(𝑓)   𝑃(𝑦,𝑓)   𝑅(𝑓)   1 (𝑓)   𝐼(𝑦)   𝑊(𝑦,𝑓)   0 (𝑓)

Proof of Theorem mplmon
StepHypRef Expression
1 mplmon.r . . . . . . 7 (𝜑𝑅 ∈ Ring)
2 eqid 2798 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
3 mplmon.o . . . . . . . . 9 1 = (1r𝑅)
42, 3ringidcl 19314 . . . . . . . 8 (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅))
5 mplmon.z . . . . . . . . 9 0 = (0g𝑅)
62, 5ring0cl 19315 . . . . . . . 8 (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅))
74, 6ifcld 4470 . . . . . . 7 (𝑅 ∈ Ring → if(𝑦 = 𝑋, 1 , 0 ) ∈ (Base‘𝑅))
81, 7syl 17 . . . . . 6 (𝜑 → if(𝑦 = 𝑋, 1 , 0 ) ∈ (Base‘𝑅))
98adantr 484 . . . . 5 ((𝜑𝑦𝐷) → if(𝑦 = 𝑋, 1 , 0 ) ∈ (Base‘𝑅))
109fmpttd 6856 . . . 4 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )):𝐷⟶(Base‘𝑅))
11 fvex 6658 . . . . 5 (Base‘𝑅) ∈ V
12 mplmon.d . . . . . 6 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
13 ovex 7168 . . . . . 6 (ℕ0m 𝐼) ∈ V
1412, 13rabex2 5201 . . . . 5 𝐷 ∈ V
1511, 14elmap 8418 . . . 4 ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ ((Base‘𝑅) ↑m 𝐷) ↔ (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )):𝐷⟶(Base‘𝑅))
1610, 15sylibr 237 . . 3 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ ((Base‘𝑅) ↑m 𝐷))
17 eqid 2798 . . . 4 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
18 eqid 2798 . . . 4 (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))
19 mplmon.i . . . 4 (𝜑𝐼𝑊)
2017, 2, 12, 18, 19psrbas 20616 . . 3 (𝜑 → (Base‘(𝐼 mPwSer 𝑅)) = ((Base‘𝑅) ↑m 𝐷))
2116, 20eleqtrrd 2893 . 2 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ (Base‘(𝐼 mPwSer 𝑅)))
2214mptex 6963 . . . . 5 (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ V
23 funmpt 6362 . . . . 5 Fun (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))
245fvexi 6659 . . . . 5 0 ∈ V
2522, 23, 243pm3.2i 1336 . . . 4 ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ V ∧ Fun (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∧ 0 ∈ V)
2625a1i 11 . . 3 (𝜑 → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ V ∧ Fun (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∧ 0 ∈ V))
27 snfi 8577 . . . 4 {𝑋} ∈ Fin
2827a1i 11 . . 3 (𝜑 → {𝑋} ∈ Fin)
29 eldifsni 4683 . . . . . . 7 (𝑦 ∈ (𝐷 ∖ {𝑋}) → 𝑦𝑋)
3029adantl 485 . . . . . 6 ((𝜑𝑦 ∈ (𝐷 ∖ {𝑋})) → 𝑦𝑋)
3130neneqd 2992 . . . . 5 ((𝜑𝑦 ∈ (𝐷 ∖ {𝑋})) → ¬ 𝑦 = 𝑋)
3231iffalsed 4436 . . . 4 ((𝜑𝑦 ∈ (𝐷 ∖ {𝑋})) → if(𝑦 = 𝑋, 1 , 0 ) = 0 )
3314a1i 11 . . . 4 (𝜑𝐷 ∈ V)
3432, 33suppss2 7847 . . 3 (𝜑 → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) supp 0 ) ⊆ {𝑋})
35 suppssfifsupp 8832 . . 3 ((((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ V ∧ Fun (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∧ 0 ∈ V) ∧ ({𝑋} ∈ Fin ∧ ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) supp 0 ) ⊆ {𝑋})) → (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) finSupp 0 )
3626, 28, 34, 35syl12anc 835 . 2 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) finSupp 0 )
37 mplmon.s . . 3 𝑃 = (𝐼 mPoly 𝑅)
38 mplmon.b . . 3 𝐵 = (Base‘𝑃)
3937, 17, 18, 5, 38mplelbas 20668 . 2 ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ 𝐵 ↔ ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) finSupp 0 ))
4021, 36, 39sylanbrc 586 1 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  {crab 3110  Vcvv 3441  cdif 3878  wss 3881  ifcif 4425  {csn 4525   class class class wbr 5030  cmpt 5110  ccnv 5518  cima 5522  Fun wfun 6318  wf 6320  cfv 6324  (class class class)co 7135   supp csupp 7813  m cmap 8389  Fincfn 8492   finSupp cfsupp 8817  cn 11625  0cn0 11885  Basecbs 16475  0gc0g 16705  1rcur 19244  Ringcrg 19290   mPwSer cmps 20589   mPoly cmpl 20591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-tset 16576  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-mgp 19233  df-ur 19245  df-ring 19292  df-psr 20594  df-mpl 20596
This theorem is referenced by:  mplmonmul  20704  mplcoe1  20705  mplbas2  20710  mplmon2  20732  mplmon2cl  20739  mplmon2mul  20740
  Copyright terms: Public domain W3C validator