MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplmon Structured version   Visualization version   GIF version

Theorem mplmon 22053
Description: A monomial is a polynomial. (Contributed by Mario Carneiro, 9-Jan-2015.)
Hypotheses
Ref Expression
mplmon.s 𝑃 = (𝐼 mPoly 𝑅)
mplmon.b 𝐵 = (Base‘𝑃)
mplmon.z 0 = (0g𝑅)
mplmon.o 1 = (1r𝑅)
mplmon.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mplmon.i (𝜑𝐼𝑊)
mplmon.r (𝜑𝑅 ∈ Ring)
mplmon.x (𝜑𝑋𝐷)
Assertion
Ref Expression
mplmon (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ 𝐵)
Distinct variable groups:   𝑦,𝐷   𝑓,𝐼   𝜑,𝑦   𝑦,𝑓,𝑋   𝑦, 0   𝑦, 1   𝑦,𝑅
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑦,𝑓)   𝐷(𝑓)   𝑃(𝑦,𝑓)   𝑅(𝑓)   1 (𝑓)   𝐼(𝑦)   𝑊(𝑦,𝑓)   0 (𝑓)

Proof of Theorem mplmon
StepHypRef Expression
1 mplmon.r . . . . . . 7 (𝜑𝑅 ∈ Ring)
2 eqid 2737 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
3 mplmon.o . . . . . . . . 9 1 = (1r𝑅)
42, 3ringidcl 20262 . . . . . . . 8 (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅))
5 mplmon.z . . . . . . . . 9 0 = (0g𝑅)
62, 5ring0cl 20264 . . . . . . . 8 (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅))
74, 6ifcld 4572 . . . . . . 7 (𝑅 ∈ Ring → if(𝑦 = 𝑋, 1 , 0 ) ∈ (Base‘𝑅))
81, 7syl 17 . . . . . 6 (𝜑 → if(𝑦 = 𝑋, 1 , 0 ) ∈ (Base‘𝑅))
98adantr 480 . . . . 5 ((𝜑𝑦𝐷) → if(𝑦 = 𝑋, 1 , 0 ) ∈ (Base‘𝑅))
109fmpttd 7135 . . . 4 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )):𝐷⟶(Base‘𝑅))
11 fvex 6919 . . . . 5 (Base‘𝑅) ∈ V
12 mplmon.d . . . . . 6 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
13 ovex 7464 . . . . . 6 (ℕ0m 𝐼) ∈ V
1412, 13rabex2 5341 . . . . 5 𝐷 ∈ V
1511, 14elmap 8911 . . . 4 ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ ((Base‘𝑅) ↑m 𝐷) ↔ (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )):𝐷⟶(Base‘𝑅))
1610, 15sylibr 234 . . 3 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ ((Base‘𝑅) ↑m 𝐷))
17 eqid 2737 . . . 4 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
18 eqid 2737 . . . 4 (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))
19 mplmon.i . . . 4 (𝜑𝐼𝑊)
2017, 2, 12, 18, 19psrbas 21953 . . 3 (𝜑 → (Base‘(𝐼 mPwSer 𝑅)) = ((Base‘𝑅) ↑m 𝐷))
2116, 20eleqtrrd 2844 . 2 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ (Base‘(𝐼 mPwSer 𝑅)))
2214mptex 7243 . . . . 5 (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ V
23 funmpt 6604 . . . . 5 Fun (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))
245fvexi 6920 . . . . 5 0 ∈ V
2522, 23, 243pm3.2i 1340 . . . 4 ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ V ∧ Fun (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∧ 0 ∈ V)
2625a1i 11 . . 3 (𝜑 → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ V ∧ Fun (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∧ 0 ∈ V))
27 snfi 9083 . . . 4 {𝑋} ∈ Fin
2827a1i 11 . . 3 (𝜑 → {𝑋} ∈ Fin)
29 eldifsni 4790 . . . . . . 7 (𝑦 ∈ (𝐷 ∖ {𝑋}) → 𝑦𝑋)
3029adantl 481 . . . . . 6 ((𝜑𝑦 ∈ (𝐷 ∖ {𝑋})) → 𝑦𝑋)
3130neneqd 2945 . . . . 5 ((𝜑𝑦 ∈ (𝐷 ∖ {𝑋})) → ¬ 𝑦 = 𝑋)
3231iffalsed 4536 . . . 4 ((𝜑𝑦 ∈ (𝐷 ∖ {𝑋})) → if(𝑦 = 𝑋, 1 , 0 ) = 0 )
3314a1i 11 . . . 4 (𝜑𝐷 ∈ V)
3432, 33suppss2 8225 . . 3 (𝜑 → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) supp 0 ) ⊆ {𝑋})
35 suppssfifsupp 9420 . . 3 ((((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ V ∧ Fun (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∧ 0 ∈ V) ∧ ({𝑋} ∈ Fin ∧ ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) supp 0 ) ⊆ {𝑋})) → (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) finSupp 0 )
3626, 28, 34, 35syl12anc 837 . 2 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) finSupp 0 )
37 mplmon.s . . 3 𝑃 = (𝐼 mPoly 𝑅)
38 mplmon.b . . 3 𝐵 = (Base‘𝑃)
3937, 17, 18, 5, 38mplelbas 22011 . 2 ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ 𝐵 ↔ ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) finSupp 0 ))
4021, 36, 39sylanbrc 583 1 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  {crab 3436  Vcvv 3480  cdif 3948  wss 3951  ifcif 4525  {csn 4626   class class class wbr 5143  cmpt 5225  ccnv 5684  cima 5688  Fun wfun 6555  wf 6557  cfv 6561  (class class class)co 7431   supp csupp 8185  m cmap 8866  Fincfn 8985   finSupp cfsupp 9401  cn 12266  0cn0 12526  Basecbs 17247  0gc0g 17484  1rcur 20178  Ringcrg 20230   mPwSer cmps 21924   mPoly cmpl 21926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-tset 17316  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-mgp 20138  df-ur 20179  df-ring 20232  df-psr 21929  df-mpl 21931
This theorem is referenced by:  mplmonmul  22054  mplcoe1  22055  mplbas2  22060  mplmon2  22085  mplmon2cl  22092  mplmon2mul  22093  selvvvval  42595
  Copyright terms: Public domain W3C validator