| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mplmon | Structured version Visualization version GIF version | ||
| Description: A monomial is a polynomial. (Contributed by Mario Carneiro, 9-Jan-2015.) |
| Ref | Expression |
|---|---|
| mplmon.s | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mplmon.b | ⊢ 𝐵 = (Base‘𝑃) |
| mplmon.z | ⊢ 0 = (0g‘𝑅) |
| mplmon.o | ⊢ 1 = (1r‘𝑅) |
| mplmon.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| mplmon.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| mplmon.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| mplmon.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
| Ref | Expression |
|---|---|
| mplmon | ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplmon.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | eqid 2729 | . . . . . . . . 9 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | mplmon.o | . . . . . . . . 9 ⊢ 1 = (1r‘𝑅) | |
| 4 | 2, 3 | ringidcl 20174 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅)) |
| 5 | mplmon.z | . . . . . . . . 9 ⊢ 0 = (0g‘𝑅) | |
| 6 | 2, 5 | ring0cl 20176 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅)) |
| 7 | 4, 6 | ifcld 4535 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → if(𝑦 = 𝑋, 1 , 0 ) ∈ (Base‘𝑅)) |
| 8 | 1, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → if(𝑦 = 𝑋, 1 , 0 ) ∈ (Base‘𝑅)) |
| 9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → if(𝑦 = 𝑋, 1 , 0 ) ∈ (Base‘𝑅)) |
| 10 | 9 | fmpttd 7087 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )):𝐷⟶(Base‘𝑅)) |
| 11 | fvex 6871 | . . . . 5 ⊢ (Base‘𝑅) ∈ V | |
| 12 | mplmon.d | . . . . . 6 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 13 | ovex 7420 | . . . . . 6 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
| 14 | 12, 13 | rabex2 5296 | . . . . 5 ⊢ 𝐷 ∈ V |
| 15 | 11, 14 | elmap 8844 | . . . 4 ⊢ ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ ((Base‘𝑅) ↑m 𝐷) ↔ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )):𝐷⟶(Base‘𝑅)) |
| 16 | 10, 15 | sylibr 234 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ ((Base‘𝑅) ↑m 𝐷)) |
| 17 | eqid 2729 | . . . 4 ⊢ (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅) | |
| 18 | eqid 2729 | . . . 4 ⊢ (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅)) | |
| 19 | mplmon.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 20 | 17, 2, 12, 18, 19 | psrbas 21842 | . . 3 ⊢ (𝜑 → (Base‘(𝐼 mPwSer 𝑅)) = ((Base‘𝑅) ↑m 𝐷)) |
| 21 | 16, 20 | eleqtrrd 2831 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ (Base‘(𝐼 mPwSer 𝑅))) |
| 22 | 14 | mptex 7197 | . . . . 5 ⊢ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ V |
| 23 | funmpt 6554 | . . . . 5 ⊢ Fun (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) | |
| 24 | 5 | fvexi 6872 | . . . . 5 ⊢ 0 ∈ V |
| 25 | 22, 23, 24 | 3pm3.2i 1340 | . . . 4 ⊢ ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ V ∧ Fun (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∧ 0 ∈ V) |
| 26 | 25 | a1i 11 | . . 3 ⊢ (𝜑 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ V ∧ Fun (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∧ 0 ∈ V)) |
| 27 | snfi 9014 | . . . 4 ⊢ {𝑋} ∈ Fin | |
| 28 | 27 | a1i 11 | . . 3 ⊢ (𝜑 → {𝑋} ∈ Fin) |
| 29 | eldifsni 4754 | . . . . . . 7 ⊢ (𝑦 ∈ (𝐷 ∖ {𝑋}) → 𝑦 ≠ 𝑋) | |
| 30 | 29 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐷 ∖ {𝑋})) → 𝑦 ≠ 𝑋) |
| 31 | 30 | neneqd 2930 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐷 ∖ {𝑋})) → ¬ 𝑦 = 𝑋) |
| 32 | 31 | iffalsed 4499 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐷 ∖ {𝑋})) → if(𝑦 = 𝑋, 1 , 0 ) = 0 ) |
| 33 | 14 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ V) |
| 34 | 32, 33 | suppss2 8179 | . . 3 ⊢ (𝜑 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) supp 0 ) ⊆ {𝑋}) |
| 35 | suppssfifsupp 9331 | . . 3 ⊢ ((((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ V ∧ Fun (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∧ 0 ∈ V) ∧ ({𝑋} ∈ Fin ∧ ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) supp 0 ) ⊆ {𝑋})) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) finSupp 0 ) | |
| 36 | 26, 28, 34, 35 | syl12anc 836 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) finSupp 0 ) |
| 37 | mplmon.s | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 38 | mplmon.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
| 39 | 37, 17, 18, 5, 38 | mplelbas 21900 | . 2 ⊢ ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ 𝐵 ↔ ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) finSupp 0 )) |
| 40 | 21, 36, 39 | sylanbrc 583 | 1 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {crab 3405 Vcvv 3447 ∖ cdif 3911 ⊆ wss 3914 ifcif 4488 {csn 4589 class class class wbr 5107 ↦ cmpt 5188 ◡ccnv 5637 “ cima 5641 Fun wfun 6505 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 supp csupp 8139 ↑m cmap 8799 Fincfn 8918 finSupp cfsupp 9312 ℕcn 12186 ℕ0cn0 12442 Basecbs 17179 0gc0g 17402 1rcur 20090 Ringcrg 20142 mPwSer cmps 21813 mPoly cmpl 21815 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-tset 17239 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-mgp 20050 df-ur 20091 df-ring 20144 df-psr 21818 df-mpl 21820 |
| This theorem is referenced by: mplmonmul 21943 mplcoe1 21944 mplbas2 21949 mplmon2 21968 mplmon2cl 21975 mplmon2mul 21976 selvvvval 42573 |
| Copyright terms: Public domain | W3C validator |