| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mplmon | Structured version Visualization version GIF version | ||
| Description: A monomial is a polynomial. (Contributed by Mario Carneiro, 9-Jan-2015.) |
| Ref | Expression |
|---|---|
| mplmon.s | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mplmon.b | ⊢ 𝐵 = (Base‘𝑃) |
| mplmon.z | ⊢ 0 = (0g‘𝑅) |
| mplmon.o | ⊢ 1 = (1r‘𝑅) |
| mplmon.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| mplmon.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| mplmon.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| mplmon.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
| Ref | Expression |
|---|---|
| mplmon | ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplmon.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | eqid 2731 | . . . . . . . . 9 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | mplmon.o | . . . . . . . . 9 ⊢ 1 = (1r‘𝑅) | |
| 4 | 2, 3 | ringidcl 20189 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅)) |
| 5 | mplmon.z | . . . . . . . . 9 ⊢ 0 = (0g‘𝑅) | |
| 6 | 2, 5 | ring0cl 20191 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅)) |
| 7 | 4, 6 | ifcld 4521 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → if(𝑦 = 𝑋, 1 , 0 ) ∈ (Base‘𝑅)) |
| 8 | 1, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → if(𝑦 = 𝑋, 1 , 0 ) ∈ (Base‘𝑅)) |
| 9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → if(𝑦 = 𝑋, 1 , 0 ) ∈ (Base‘𝑅)) |
| 10 | 9 | fmpttd 7054 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )):𝐷⟶(Base‘𝑅)) |
| 11 | fvex 6841 | . . . . 5 ⊢ (Base‘𝑅) ∈ V | |
| 12 | mplmon.d | . . . . . 6 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 13 | ovex 7385 | . . . . . 6 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
| 14 | 12, 13 | rabex2 5281 | . . . . 5 ⊢ 𝐷 ∈ V |
| 15 | 11, 14 | elmap 8801 | . . . 4 ⊢ ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ ((Base‘𝑅) ↑m 𝐷) ↔ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )):𝐷⟶(Base‘𝑅)) |
| 16 | 10, 15 | sylibr 234 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ ((Base‘𝑅) ↑m 𝐷)) |
| 17 | eqid 2731 | . . . 4 ⊢ (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅) | |
| 18 | eqid 2731 | . . . 4 ⊢ (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅)) | |
| 19 | mplmon.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 20 | 17, 2, 12, 18, 19 | psrbas 21876 | . . 3 ⊢ (𝜑 → (Base‘(𝐼 mPwSer 𝑅)) = ((Base‘𝑅) ↑m 𝐷)) |
| 21 | 16, 20 | eleqtrrd 2834 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ (Base‘(𝐼 mPwSer 𝑅))) |
| 22 | 14 | mptex 7163 | . . . . 5 ⊢ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ V |
| 23 | funmpt 6525 | . . . . 5 ⊢ Fun (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) | |
| 24 | 5 | fvexi 6842 | . . . . 5 ⊢ 0 ∈ V |
| 25 | 22, 23, 24 | 3pm3.2i 1340 | . . . 4 ⊢ ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ V ∧ Fun (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∧ 0 ∈ V) |
| 26 | 25 | a1i 11 | . . 3 ⊢ (𝜑 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ V ∧ Fun (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∧ 0 ∈ V)) |
| 27 | snfi 8971 | . . . 4 ⊢ {𝑋} ∈ Fin | |
| 28 | 27 | a1i 11 | . . 3 ⊢ (𝜑 → {𝑋} ∈ Fin) |
| 29 | eldifsni 4741 | . . . . . . 7 ⊢ (𝑦 ∈ (𝐷 ∖ {𝑋}) → 𝑦 ≠ 𝑋) | |
| 30 | 29 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐷 ∖ {𝑋})) → 𝑦 ≠ 𝑋) |
| 31 | 30 | neneqd 2933 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐷 ∖ {𝑋})) → ¬ 𝑦 = 𝑋) |
| 32 | 31 | iffalsed 4485 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐷 ∖ {𝑋})) → if(𝑦 = 𝑋, 1 , 0 ) = 0 ) |
| 33 | 14 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ V) |
| 34 | 32, 33 | suppss2 8136 | . . 3 ⊢ (𝜑 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) supp 0 ) ⊆ {𝑋}) |
| 35 | suppssfifsupp 9270 | . . 3 ⊢ ((((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ V ∧ Fun (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∧ 0 ∈ V) ∧ ({𝑋} ∈ Fin ∧ ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) supp 0 ) ⊆ {𝑋})) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) finSupp 0 ) | |
| 36 | 26, 28, 34, 35 | syl12anc 836 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) finSupp 0 ) |
| 37 | mplmon.s | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 38 | mplmon.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
| 39 | 37, 17, 18, 5, 38 | mplelbas 21934 | . 2 ⊢ ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ 𝐵 ↔ ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) finSupp 0 )) |
| 40 | 21, 36, 39 | sylanbrc 583 | 1 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 {crab 3395 Vcvv 3436 ∖ cdif 3894 ⊆ wss 3897 ifcif 4474 {csn 4575 class class class wbr 5093 ↦ cmpt 5174 ◡ccnv 5618 “ cima 5622 Fun wfun 6481 ⟶wf 6483 ‘cfv 6487 (class class class)co 7352 supp csupp 8096 ↑m cmap 8756 Fincfn 8875 finSupp cfsupp 9251 ℕcn 12131 ℕ0cn0 12387 Basecbs 17126 0gc0g 17349 1rcur 20105 Ringcrg 20157 mPwSer cmps 21847 mPoly cmpl 21849 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9252 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-2 12194 df-3 12195 df-4 12196 df-5 12197 df-6 12198 df-7 12199 df-8 12200 df-9 12201 df-n0 12388 df-z 12475 df-uz 12739 df-fz 13414 df-struct 17064 df-sets 17081 df-slot 17099 df-ndx 17111 df-base 17127 df-ress 17148 df-plusg 17180 df-mulr 17181 df-sca 17183 df-vsca 17184 df-tset 17186 df-0g 17351 df-mgm 18554 df-sgrp 18633 df-mnd 18649 df-grp 18855 df-mgp 20065 df-ur 20106 df-ring 20159 df-psr 21852 df-mpl 21854 |
| This theorem is referenced by: mplmonmul 21977 mplcoe1 21978 mplbas2 21983 mplmon2 22002 mplmon2cl 22009 mplmon2mul 22010 selvvvval 42684 |
| Copyright terms: Public domain | W3C validator |