![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mplmon | Structured version Visualization version GIF version |
Description: A monomial is a polynomial. (Contributed by Mario Carneiro, 9-Jan-2015.) |
Ref | Expression |
---|---|
mplmon.s | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mplmon.b | ⊢ 𝐵 = (Base‘𝑃) |
mplmon.z | ⊢ 0 = (0g‘𝑅) |
mplmon.o | ⊢ 1 = (1r‘𝑅) |
mplmon.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
mplmon.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
mplmon.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
mplmon.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
Ref | Expression |
---|---|
mplmon | ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mplmon.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | eqid 2772 | . . . . . . . . 9 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | mplmon.o | . . . . . . . . 9 ⊢ 1 = (1r‘𝑅) | |
4 | 2, 3 | ringidcl 19035 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅)) |
5 | mplmon.z | . . . . . . . . 9 ⊢ 0 = (0g‘𝑅) | |
6 | 2, 5 | ring0cl 19036 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅)) |
7 | 4, 6 | ifcld 4389 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → if(𝑦 = 𝑋, 1 , 0 ) ∈ (Base‘𝑅)) |
8 | 1, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → if(𝑦 = 𝑋, 1 , 0 ) ∈ (Base‘𝑅)) |
9 | 8 | adantr 473 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → if(𝑦 = 𝑋, 1 , 0 ) ∈ (Base‘𝑅)) |
10 | 9 | fmpttd 6696 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )):𝐷⟶(Base‘𝑅)) |
11 | fvex 6506 | . . . . 5 ⊢ (Base‘𝑅) ∈ V | |
12 | mplmon.d | . . . . . 6 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
13 | ovex 7002 | . . . . . 6 ⊢ (ℕ0 ↑𝑚 𝐼) ∈ V | |
14 | 12, 13 | rabex2 5087 | . . . . 5 ⊢ 𝐷 ∈ V |
15 | 11, 14 | elmap 8229 | . . . 4 ⊢ ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ ((Base‘𝑅) ↑𝑚 𝐷) ↔ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )):𝐷⟶(Base‘𝑅)) |
16 | 10, 15 | sylibr 226 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ ((Base‘𝑅) ↑𝑚 𝐷)) |
17 | eqid 2772 | . . . 4 ⊢ (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅) | |
18 | eqid 2772 | . . . 4 ⊢ (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅)) | |
19 | mplmon.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
20 | 17, 2, 12, 18, 19 | psrbas 19866 | . . 3 ⊢ (𝜑 → (Base‘(𝐼 mPwSer 𝑅)) = ((Base‘𝑅) ↑𝑚 𝐷)) |
21 | 16, 20 | eleqtrrd 2863 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ (Base‘(𝐼 mPwSer 𝑅))) |
22 | 14 | mptex 6806 | . . . . 5 ⊢ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ V |
23 | funmpt 6220 | . . . . 5 ⊢ Fun (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) | |
24 | 5 | fvexi 6507 | . . . . 5 ⊢ 0 ∈ V |
25 | 22, 23, 24 | 3pm3.2i 1319 | . . . 4 ⊢ ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ V ∧ Fun (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∧ 0 ∈ V) |
26 | 25 | a1i 11 | . . 3 ⊢ (𝜑 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ V ∧ Fun (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∧ 0 ∈ V)) |
27 | snfi 8385 | . . . 4 ⊢ {𝑋} ∈ Fin | |
28 | 27 | a1i 11 | . . 3 ⊢ (𝜑 → {𝑋} ∈ Fin) |
29 | eldifsni 4590 | . . . . . . 7 ⊢ (𝑦 ∈ (𝐷 ∖ {𝑋}) → 𝑦 ≠ 𝑋) | |
30 | 29 | adantl 474 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐷 ∖ {𝑋})) → 𝑦 ≠ 𝑋) |
31 | 30 | neneqd 2966 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐷 ∖ {𝑋})) → ¬ 𝑦 = 𝑋) |
32 | 31 | iffalsed 4355 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐷 ∖ {𝑋})) → if(𝑦 = 𝑋, 1 , 0 ) = 0 ) |
33 | 14 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ V) |
34 | 32, 33 | suppss2 7661 | . . 3 ⊢ (𝜑 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) supp 0 ) ⊆ {𝑋}) |
35 | suppssfifsupp 8637 | . . 3 ⊢ ((((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ V ∧ Fun (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∧ 0 ∈ V) ∧ ({𝑋} ∈ Fin ∧ ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) supp 0 ) ⊆ {𝑋})) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) finSupp 0 ) | |
36 | 26, 28, 34, 35 | syl12anc 824 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) finSupp 0 ) |
37 | mplmon.s | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
38 | mplmon.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
39 | 37, 17, 18, 5, 38 | mplelbas 19918 | . 2 ⊢ ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ 𝐵 ↔ ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) finSupp 0 )) |
40 | 21, 36, 39 | sylanbrc 575 | 1 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1068 = wceq 1507 ∈ wcel 2050 ≠ wne 2961 {crab 3086 Vcvv 3409 ∖ cdif 3820 ⊆ wss 3823 ifcif 4344 {csn 4435 class class class wbr 4923 ↦ cmpt 5002 ◡ccnv 5400 “ cima 5404 Fun wfun 6176 ⟶wf 6178 ‘cfv 6182 (class class class)co 6970 supp csupp 7627 ↑𝑚 cmap 8200 Fincfn 8300 finSupp cfsupp 8622 ℕcn 11433 ℕ0cn0 11701 Basecbs 16333 0gc0g 16563 1rcur 18968 Ringcrg 19014 mPwSer cmps 19839 mPoly cmpl 19841 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10385 ax-resscn 10386 ax-1cn 10387 ax-icn 10388 ax-addcl 10389 ax-addrcl 10390 ax-mulcl 10391 ax-mulrcl 10392 ax-mulcom 10393 ax-addass 10394 ax-mulass 10395 ax-distr 10396 ax-i2m1 10397 ax-1ne0 10398 ax-1rid 10399 ax-rnegex 10400 ax-rrecex 10401 ax-cnre 10402 ax-pre-lttri 10403 ax-pre-lttrn 10404 ax-pre-ltadd 10405 ax-pre-mulgt0 10406 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-pss 3839 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-int 4744 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5306 df-eprel 5311 df-po 5320 df-so 5321 df-fr 5360 df-we 5362 df-xp 5407 df-rel 5408 df-cnv 5409 df-co 5410 df-dm 5411 df-rn 5412 df-res 5413 df-ima 5414 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-of 7221 df-om 7391 df-1st 7495 df-2nd 7496 df-supp 7628 df-wrecs 7744 df-recs 7806 df-rdg 7844 df-1o 7899 df-oadd 7903 df-er 8083 df-map 8202 df-en 8301 df-dom 8302 df-sdom 8303 df-fin 8304 df-fsupp 8623 df-pnf 10470 df-mnf 10471 df-xr 10472 df-ltxr 10473 df-le 10474 df-sub 10666 df-neg 10667 df-nn 11434 df-2 11497 df-3 11498 df-4 11499 df-5 11500 df-6 11501 df-7 11502 df-8 11503 df-9 11504 df-n0 11702 df-z 11788 df-uz 12053 df-fz 12703 df-struct 16335 df-ndx 16336 df-slot 16337 df-base 16339 df-sets 16340 df-ress 16341 df-plusg 16428 df-mulr 16429 df-sca 16431 df-vsca 16432 df-tset 16434 df-0g 16565 df-mgm 17704 df-sgrp 17746 df-mnd 17757 df-grp 17888 df-mgp 18957 df-ur 18969 df-ring 19016 df-psr 19844 df-mpl 19846 |
This theorem is referenced by: mplmonmul 19952 mplcoe1 19953 mplbas2 19958 mplmon2 19980 mplmon2cl 19987 mplmon2mul 19988 |
Copyright terms: Public domain | W3C validator |