MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplmon Structured version   Visualization version   GIF version

Theorem mplmon 21342
Description: A monomial is a polynomial. (Contributed by Mario Carneiro, 9-Jan-2015.)
Hypotheses
Ref Expression
mplmon.s 𝑃 = (𝐼 mPoly 𝑅)
mplmon.b 𝐵 = (Base‘𝑃)
mplmon.z 0 = (0g𝑅)
mplmon.o 1 = (1r𝑅)
mplmon.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mplmon.i (𝜑𝐼𝑊)
mplmon.r (𝜑𝑅 ∈ Ring)
mplmon.x (𝜑𝑋𝐷)
Assertion
Ref Expression
mplmon (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ 𝐵)
Distinct variable groups:   𝑦,𝐷   𝑓,𝐼   𝜑,𝑦   𝑦,𝑓,𝑋   𝑦, 0   𝑦, 1   𝑦,𝑅
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑦,𝑓)   𝐷(𝑓)   𝑃(𝑦,𝑓)   𝑅(𝑓)   1 (𝑓)   𝐼(𝑦)   𝑊(𝑦,𝑓)   0 (𝑓)

Proof of Theorem mplmon
StepHypRef Expression
1 mplmon.r . . . . . . 7 (𝜑𝑅 ∈ Ring)
2 eqid 2736 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
3 mplmon.o . . . . . . . . 9 1 = (1r𝑅)
42, 3ringidcl 19902 . . . . . . . 8 (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅))
5 mplmon.z . . . . . . . . 9 0 = (0g𝑅)
62, 5ring0cl 19903 . . . . . . . 8 (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅))
74, 6ifcld 4519 . . . . . . 7 (𝑅 ∈ Ring → if(𝑦 = 𝑋, 1 , 0 ) ∈ (Base‘𝑅))
81, 7syl 17 . . . . . 6 (𝜑 → if(𝑦 = 𝑋, 1 , 0 ) ∈ (Base‘𝑅))
98adantr 481 . . . . 5 ((𝜑𝑦𝐷) → if(𝑦 = 𝑋, 1 , 0 ) ∈ (Base‘𝑅))
109fmpttd 7045 . . . 4 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )):𝐷⟶(Base‘𝑅))
11 fvex 6838 . . . . 5 (Base‘𝑅) ∈ V
12 mplmon.d . . . . . 6 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
13 ovex 7370 . . . . . 6 (ℕ0m 𝐼) ∈ V
1412, 13rabex2 5278 . . . . 5 𝐷 ∈ V
1511, 14elmap 8730 . . . 4 ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ ((Base‘𝑅) ↑m 𝐷) ↔ (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )):𝐷⟶(Base‘𝑅))
1610, 15sylibr 233 . . 3 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ ((Base‘𝑅) ↑m 𝐷))
17 eqid 2736 . . . 4 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
18 eqid 2736 . . . 4 (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))
19 mplmon.i . . . 4 (𝜑𝐼𝑊)
2017, 2, 12, 18, 19psrbas 21253 . . 3 (𝜑 → (Base‘(𝐼 mPwSer 𝑅)) = ((Base‘𝑅) ↑m 𝐷))
2116, 20eleqtrrd 2840 . 2 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ (Base‘(𝐼 mPwSer 𝑅)))
2214mptex 7155 . . . . 5 (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ V
23 funmpt 6522 . . . . 5 Fun (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))
245fvexi 6839 . . . . 5 0 ∈ V
2522, 23, 243pm3.2i 1338 . . . 4 ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ V ∧ Fun (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∧ 0 ∈ V)
2625a1i 11 . . 3 (𝜑 → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ V ∧ Fun (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∧ 0 ∈ V))
27 snfi 8909 . . . 4 {𝑋} ∈ Fin
2827a1i 11 . . 3 (𝜑 → {𝑋} ∈ Fin)
29 eldifsni 4737 . . . . . . 7 (𝑦 ∈ (𝐷 ∖ {𝑋}) → 𝑦𝑋)
3029adantl 482 . . . . . 6 ((𝜑𝑦 ∈ (𝐷 ∖ {𝑋})) → 𝑦𝑋)
3130neneqd 2945 . . . . 5 ((𝜑𝑦 ∈ (𝐷 ∖ {𝑋})) → ¬ 𝑦 = 𝑋)
3231iffalsed 4484 . . . 4 ((𝜑𝑦 ∈ (𝐷 ∖ {𝑋})) → if(𝑦 = 𝑋, 1 , 0 ) = 0 )
3314a1i 11 . . . 4 (𝜑𝐷 ∈ V)
3432, 33suppss2 8086 . . 3 (𝜑 → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) supp 0 ) ⊆ {𝑋})
35 suppssfifsupp 9241 . . 3 ((((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ V ∧ Fun (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∧ 0 ∈ V) ∧ ({𝑋} ∈ Fin ∧ ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) supp 0 ) ⊆ {𝑋})) → (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) finSupp 0 )
3626, 28, 34, 35syl12anc 834 . 2 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) finSupp 0 )
37 mplmon.s . . 3 𝑃 = (𝐼 mPoly 𝑅)
38 mplmon.b . . 3 𝐵 = (Base‘𝑃)
3937, 17, 18, 5, 38mplelbas 21305 . 2 ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ 𝐵 ↔ ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) finSupp 0 ))
4021, 36, 39sylanbrc 583 1 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  wne 2940  {crab 3403  Vcvv 3441  cdif 3895  wss 3898  ifcif 4473  {csn 4573   class class class wbr 5092  cmpt 5175  ccnv 5619  cima 5623  Fun wfun 6473  wf 6475  cfv 6479  (class class class)co 7337   supp csupp 8047  m cmap 8686  Fincfn 8804   finSupp cfsupp 9226  cn 12074  0cn0 12334  Basecbs 17009  0gc0g 17247  1rcur 19832  Ringcrg 19878   mPwSer cmps 21213   mPoly cmpl 21215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-of 7595  df-om 7781  df-1st 7899  df-2nd 7900  df-supp 8048  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-1o 8367  df-er 8569  df-map 8688  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-fsupp 9227  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-nn 12075  df-2 12137  df-3 12138  df-4 12139  df-5 12140  df-6 12141  df-7 12142  df-8 12143  df-9 12144  df-n0 12335  df-z 12421  df-uz 12684  df-fz 13341  df-struct 16945  df-sets 16962  df-slot 16980  df-ndx 16992  df-base 17010  df-ress 17039  df-plusg 17072  df-mulr 17073  df-sca 17075  df-vsca 17076  df-tset 17078  df-0g 17249  df-mgm 18423  df-sgrp 18472  df-mnd 18483  df-grp 18676  df-mgp 19816  df-ur 19833  df-ring 19880  df-psr 21218  df-mpl 21220
This theorem is referenced by:  mplmonmul  21343  mplcoe1  21344  mplbas2  21349  mplmon2  21375  mplmon2cl  21382  mplmon2mul  21383
  Copyright terms: Public domain W3C validator