|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > mplmon | Structured version Visualization version GIF version | ||
| Description: A monomial is a polynomial. (Contributed by Mario Carneiro, 9-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| mplmon.s | ⊢ 𝑃 = (𝐼 mPoly 𝑅) | 
| mplmon.b | ⊢ 𝐵 = (Base‘𝑃) | 
| mplmon.z | ⊢ 0 = (0g‘𝑅) | 
| mplmon.o | ⊢ 1 = (1r‘𝑅) | 
| mplmon.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | 
| mplmon.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) | 
| mplmon.r | ⊢ (𝜑 → 𝑅 ∈ Ring) | 
| mplmon.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) | 
| Ref | Expression | 
|---|---|
| mplmon | ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mplmon.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | eqid 2737 | . . . . . . . . 9 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | mplmon.o | . . . . . . . . 9 ⊢ 1 = (1r‘𝑅) | |
| 4 | 2, 3 | ringidcl 20262 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅)) | 
| 5 | mplmon.z | . . . . . . . . 9 ⊢ 0 = (0g‘𝑅) | |
| 6 | 2, 5 | ring0cl 20264 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅)) | 
| 7 | 4, 6 | ifcld 4572 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → if(𝑦 = 𝑋, 1 , 0 ) ∈ (Base‘𝑅)) | 
| 8 | 1, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → if(𝑦 = 𝑋, 1 , 0 ) ∈ (Base‘𝑅)) | 
| 9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → if(𝑦 = 𝑋, 1 , 0 ) ∈ (Base‘𝑅)) | 
| 10 | 9 | fmpttd 7135 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )):𝐷⟶(Base‘𝑅)) | 
| 11 | fvex 6919 | . . . . 5 ⊢ (Base‘𝑅) ∈ V | |
| 12 | mplmon.d | . . . . . 6 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 13 | ovex 7464 | . . . . . 6 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
| 14 | 12, 13 | rabex2 5341 | . . . . 5 ⊢ 𝐷 ∈ V | 
| 15 | 11, 14 | elmap 8911 | . . . 4 ⊢ ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ ((Base‘𝑅) ↑m 𝐷) ↔ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )):𝐷⟶(Base‘𝑅)) | 
| 16 | 10, 15 | sylibr 234 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ ((Base‘𝑅) ↑m 𝐷)) | 
| 17 | eqid 2737 | . . . 4 ⊢ (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅) | |
| 18 | eqid 2737 | . . . 4 ⊢ (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅)) | |
| 19 | mplmon.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 20 | 17, 2, 12, 18, 19 | psrbas 21953 | . . 3 ⊢ (𝜑 → (Base‘(𝐼 mPwSer 𝑅)) = ((Base‘𝑅) ↑m 𝐷)) | 
| 21 | 16, 20 | eleqtrrd 2844 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ (Base‘(𝐼 mPwSer 𝑅))) | 
| 22 | 14 | mptex 7243 | . . . . 5 ⊢ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ V | 
| 23 | funmpt 6604 | . . . . 5 ⊢ Fun (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) | |
| 24 | 5 | fvexi 6920 | . . . . 5 ⊢ 0 ∈ V | 
| 25 | 22, 23, 24 | 3pm3.2i 1340 | . . . 4 ⊢ ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ V ∧ Fun (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∧ 0 ∈ V) | 
| 26 | 25 | a1i 11 | . . 3 ⊢ (𝜑 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ V ∧ Fun (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∧ 0 ∈ V)) | 
| 27 | snfi 9083 | . . . 4 ⊢ {𝑋} ∈ Fin | |
| 28 | 27 | a1i 11 | . . 3 ⊢ (𝜑 → {𝑋} ∈ Fin) | 
| 29 | eldifsni 4790 | . . . . . . 7 ⊢ (𝑦 ∈ (𝐷 ∖ {𝑋}) → 𝑦 ≠ 𝑋) | |
| 30 | 29 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐷 ∖ {𝑋})) → 𝑦 ≠ 𝑋) | 
| 31 | 30 | neneqd 2945 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐷 ∖ {𝑋})) → ¬ 𝑦 = 𝑋) | 
| 32 | 31 | iffalsed 4536 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐷 ∖ {𝑋})) → if(𝑦 = 𝑋, 1 , 0 ) = 0 ) | 
| 33 | 14 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ V) | 
| 34 | 32, 33 | suppss2 8225 | . . 3 ⊢ (𝜑 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) supp 0 ) ⊆ {𝑋}) | 
| 35 | suppssfifsupp 9420 | . . 3 ⊢ ((((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ V ∧ Fun (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∧ 0 ∈ V) ∧ ({𝑋} ∈ Fin ∧ ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) supp 0 ) ⊆ {𝑋})) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) finSupp 0 ) | |
| 36 | 26, 28, 34, 35 | syl12anc 837 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) finSupp 0 ) | 
| 37 | mplmon.s | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 38 | mplmon.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
| 39 | 37, 17, 18, 5, 38 | mplelbas 22011 | . 2 ⊢ ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ 𝐵 ↔ ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) finSupp 0 )) | 
| 40 | 21, 36, 39 | sylanbrc 583 | 1 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ 𝐵) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 {crab 3436 Vcvv 3480 ∖ cdif 3948 ⊆ wss 3951 ifcif 4525 {csn 4626 class class class wbr 5143 ↦ cmpt 5225 ◡ccnv 5684 “ cima 5688 Fun wfun 6555 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 supp csupp 8185 ↑m cmap 8866 Fincfn 8985 finSupp cfsupp 9401 ℕcn 12266 ℕ0cn0 12526 Basecbs 17247 0gc0g 17484 1rcur 20178 Ringcrg 20230 mPwSer cmps 21924 mPoly cmpl 21926 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-uz 12879 df-fz 13548 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-tset 17316 df-0g 17486 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-grp 18954 df-mgp 20138 df-ur 20179 df-ring 20232 df-psr 21929 df-mpl 21931 | 
| This theorem is referenced by: mplmonmul 22054 mplcoe1 22055 mplbas2 22060 mplmon2 22085 mplmon2cl 22092 mplmon2mul 22093 selvvvval 42595 | 
| Copyright terms: Public domain | W3C validator |