![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mplmon | Structured version Visualization version GIF version |
Description: A monomial is a polynomial. (Contributed by Mario Carneiro, 9-Jan-2015.) |
Ref | Expression |
---|---|
mplmon.s | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mplmon.b | ⊢ 𝐵 = (Base‘𝑃) |
mplmon.z | ⊢ 0 = (0g‘𝑅) |
mplmon.o | ⊢ 1 = (1r‘𝑅) |
mplmon.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
mplmon.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
mplmon.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
mplmon.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
Ref | Expression |
---|---|
mplmon | ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mplmon.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | eqid 2724 | . . . . . . . . 9 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | mplmon.o | . . . . . . . . 9 ⊢ 1 = (1r‘𝑅) | |
4 | 2, 3 | ringidcl 20161 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅)) |
5 | mplmon.z | . . . . . . . . 9 ⊢ 0 = (0g‘𝑅) | |
6 | 2, 5 | ring0cl 20162 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅)) |
7 | 4, 6 | ifcld 4567 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → if(𝑦 = 𝑋, 1 , 0 ) ∈ (Base‘𝑅)) |
8 | 1, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → if(𝑦 = 𝑋, 1 , 0 ) ∈ (Base‘𝑅)) |
9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → if(𝑦 = 𝑋, 1 , 0 ) ∈ (Base‘𝑅)) |
10 | 9 | fmpttd 7107 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )):𝐷⟶(Base‘𝑅)) |
11 | fvex 6895 | . . . . 5 ⊢ (Base‘𝑅) ∈ V | |
12 | mplmon.d | . . . . . 6 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
13 | ovex 7435 | . . . . . 6 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
14 | 12, 13 | rabex2 5325 | . . . . 5 ⊢ 𝐷 ∈ V |
15 | 11, 14 | elmap 8862 | . . . 4 ⊢ ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ ((Base‘𝑅) ↑m 𝐷) ↔ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )):𝐷⟶(Base‘𝑅)) |
16 | 10, 15 | sylibr 233 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ ((Base‘𝑅) ↑m 𝐷)) |
17 | eqid 2724 | . . . 4 ⊢ (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅) | |
18 | eqid 2724 | . . . 4 ⊢ (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅)) | |
19 | mplmon.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
20 | 17, 2, 12, 18, 19 | psrbas 21827 | . . 3 ⊢ (𝜑 → (Base‘(𝐼 mPwSer 𝑅)) = ((Base‘𝑅) ↑m 𝐷)) |
21 | 16, 20 | eleqtrrd 2828 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ (Base‘(𝐼 mPwSer 𝑅))) |
22 | 14 | mptex 7217 | . . . . 5 ⊢ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ V |
23 | funmpt 6577 | . . . . 5 ⊢ Fun (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) | |
24 | 5 | fvexi 6896 | . . . . 5 ⊢ 0 ∈ V |
25 | 22, 23, 24 | 3pm3.2i 1336 | . . . 4 ⊢ ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ V ∧ Fun (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∧ 0 ∈ V) |
26 | 25 | a1i 11 | . . 3 ⊢ (𝜑 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ V ∧ Fun (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∧ 0 ∈ V)) |
27 | snfi 9041 | . . . 4 ⊢ {𝑋} ∈ Fin | |
28 | 27 | a1i 11 | . . 3 ⊢ (𝜑 → {𝑋} ∈ Fin) |
29 | eldifsni 4786 | . . . . . . 7 ⊢ (𝑦 ∈ (𝐷 ∖ {𝑋}) → 𝑦 ≠ 𝑋) | |
30 | 29 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐷 ∖ {𝑋})) → 𝑦 ≠ 𝑋) |
31 | 30 | neneqd 2937 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐷 ∖ {𝑋})) → ¬ 𝑦 = 𝑋) |
32 | 31 | iffalsed 4532 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐷 ∖ {𝑋})) → if(𝑦 = 𝑋, 1 , 0 ) = 0 ) |
33 | 14 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ V) |
34 | 32, 33 | suppss2 8181 | . . 3 ⊢ (𝜑 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) supp 0 ) ⊆ {𝑋}) |
35 | suppssfifsupp 9375 | . . 3 ⊢ ((((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ V ∧ Fun (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∧ 0 ∈ V) ∧ ({𝑋} ∈ Fin ∧ ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) supp 0 ) ⊆ {𝑋})) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) finSupp 0 ) | |
36 | 26, 28, 34, 35 | syl12anc 834 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) finSupp 0 ) |
37 | mplmon.s | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
38 | mplmon.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
39 | 37, 17, 18, 5, 38 | mplelbas 21881 | . 2 ⊢ ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ 𝐵 ↔ ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) finSupp 0 )) |
40 | 21, 36, 39 | sylanbrc 582 | 1 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 {crab 3424 Vcvv 3466 ∖ cdif 3938 ⊆ wss 3941 ifcif 4521 {csn 4621 class class class wbr 5139 ↦ cmpt 5222 ◡ccnv 5666 “ cima 5670 Fun wfun 6528 ⟶wf 6530 ‘cfv 6534 (class class class)co 7402 supp csupp 8141 ↑m cmap 8817 Fincfn 8936 finSupp cfsupp 9358 ℕcn 12211 ℕ0cn0 12471 Basecbs 17149 0gc0g 17390 1rcur 20082 Ringcrg 20134 mPwSer cmps 21787 mPoly cmpl 21789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-tp 4626 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-of 7664 df-om 7850 df-1st 7969 df-2nd 7970 df-supp 8142 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8700 df-map 8819 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-fsupp 9359 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-uz 12822 df-fz 13486 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-sca 17218 df-vsca 17219 df-tset 17221 df-0g 17392 df-mgm 18569 df-sgrp 18648 df-mnd 18664 df-grp 18862 df-mgp 20036 df-ur 20083 df-ring 20136 df-psr 21792 df-mpl 21794 |
This theorem is referenced by: mplmonmul 21922 mplcoe1 21923 mplbas2 21928 mplmon2 21953 mplmon2cl 21960 mplmon2mul 21961 selvvvval 41688 |
Copyright terms: Public domain | W3C validator |