MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgamgulmlem5 Structured version   Visualization version   GIF version

Theorem lgamgulmlem5 27000
Description: Lemma for lgamgulm 27002. (Contributed by Mario Carneiro, 3-Jul-2017.)
Hypotheses
Ref Expression
lgamgulm.r (𝜑𝑅 ∈ ℕ)
lgamgulm.u 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
lgamgulm.g 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))
lgamgulm.t 𝑇 = (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π))))
Assertion
Ref Expression
lgamgulmlem5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝐺𝑛)‘𝑦)) ≤ (𝑇𝑛))
Distinct variable groups:   𝑦,𝑛,𝐺   𝑥,𝑦   𝑘,𝑚,𝑛,𝑥,𝑦,𝑧,𝑅   𝑈,𝑚,𝑛,𝑦,𝑧   𝜑,𝑚,𝑛,𝑥,𝑦,𝑧   𝑇,𝑛,𝑦
Allowed substitution hints:   𝜑(𝑘)   𝑇(𝑥,𝑧,𝑘,𝑚)   𝑈(𝑥,𝑘)   𝐺(𝑥,𝑧,𝑘,𝑚)

Proof of Theorem lgamgulmlem5
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 breq2 5128 . . 3 ((𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))) = if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))) → ((abs‘((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1)))) ≤ (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))) ↔ (abs‘((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1)))) ≤ if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)))))
2 breq2 5128 . . 3 (((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)) = if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))) → ((abs‘((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1)))) ≤ ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)) ↔ (abs‘((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1)))) ≤ if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)))))
3 lgamgulm.r . . . . . 6 (𝜑𝑅 ∈ ℕ)
43adantr 480 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑅 ∈ ℕ)
54adantr 480 . . . 4 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) ∧ (2 · 𝑅) ≤ 𝑛) → 𝑅 ∈ ℕ)
6 lgamgulm.u . . . . 5 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
7 fveq2 6881 . . . . . . . 8 (𝑥 = 𝑡 → (abs‘𝑥) = (abs‘𝑡))
87breq1d 5134 . . . . . . 7 (𝑥 = 𝑡 → ((abs‘𝑥) ≤ 𝑅 ↔ (abs‘𝑡) ≤ 𝑅))
9 fvoveq1 7433 . . . . . . . . 9 (𝑥 = 𝑡 → (abs‘(𝑥 + 𝑘)) = (abs‘(𝑡 + 𝑘)))
109breq2d 5136 . . . . . . . 8 (𝑥 = 𝑡 → ((1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ (1 / 𝑅) ≤ (abs‘(𝑡 + 𝑘))))
1110ralbidv 3164 . . . . . . 7 (𝑥 = 𝑡 → (∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑡 + 𝑘))))
128, 11anbi12d 632 . . . . . 6 (𝑥 = 𝑡 → (((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘))) ↔ ((abs‘𝑡) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑡 + 𝑘)))))
1312cbvrabv 3431 . . . . 5 {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} = {𝑡 ∈ ℂ ∣ ((abs‘𝑡) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑡 + 𝑘)))}
146, 13eqtri 2759 . . . 4 𝑈 = {𝑡 ∈ ℂ ∣ ((abs‘𝑡) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑡 + 𝑘)))}
15 simplrl 776 . . . 4 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) ∧ (2 · 𝑅) ≤ 𝑛) → 𝑛 ∈ ℕ)
16 simprr 772 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑦𝑈)
1716adantr 480 . . . 4 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) ∧ (2 · 𝑅) ≤ 𝑛) → 𝑦𝑈)
18 simpr 484 . . . 4 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) ∧ (2 · 𝑅) ≤ 𝑛) → (2 · 𝑅) ≤ 𝑛)
195, 14, 15, 17, 18lgamgulmlem3 26998 . . 3 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) ∧ (2 · 𝑅) ≤ 𝑛) → (abs‘((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1)))) ≤ (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))))
203, 6lgamgulmlem1 26996 . . . . . . . . . . 11 (𝜑𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
2120adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
2221, 16sseldd 3964 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑦 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
2322eldifad 3943 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑦 ∈ ℂ)
24 simprl 770 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑛 ∈ ℕ)
2524peano2nnd 12262 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑛 + 1) ∈ ℕ)
2625nnrpd 13054 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑛 + 1) ∈ ℝ+)
2724nnrpd 13054 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑛 ∈ ℝ+)
2826, 27rpdivcld 13073 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝑛 + 1) / 𝑛) ∈ ℝ+)
2928relogcld 26589 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (log‘((𝑛 + 1) / 𝑛)) ∈ ℝ)
3029recnd 11268 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (log‘((𝑛 + 1) / 𝑛)) ∈ ℂ)
3123, 30mulcld 11260 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑦 · (log‘((𝑛 + 1) / 𝑛))) ∈ ℂ)
3224nncnd 12261 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑛 ∈ ℂ)
3324nnne0d 12295 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑛 ≠ 0)
3423, 32, 33divcld 12022 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑦 / 𝑛) ∈ ℂ)
35 1cnd 11235 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 1 ∈ ℂ)
3634, 35addcld 11259 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝑦 / 𝑛) + 1) ∈ ℂ)
3722, 24dmgmdivn0 26995 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝑦 / 𝑛) + 1) ≠ 0)
3836, 37logcld 26536 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (log‘((𝑦 / 𝑛) + 1)) ∈ ℂ)
3931, 38subcld 11599 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1))) ∈ ℂ)
4039abscld 15460 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1)))) ∈ ℝ)
4131abscld 15460 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(𝑦 · (log‘((𝑛 + 1) / 𝑛)))) ∈ ℝ)
4238abscld 15460 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(log‘((𝑦 / 𝑛) + 1))) ∈ ℝ)
4341, 42readdcld 11269 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘(𝑦 · (log‘((𝑛 + 1) / 𝑛)))) + (abs‘(log‘((𝑦 / 𝑛) + 1)))) ∈ ℝ)
444nnred 12260 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑅 ∈ ℝ)
4544, 29remulcld 11270 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑅 · (log‘((𝑛 + 1) / 𝑛))) ∈ ℝ)
464peano2nnd 12262 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑅 + 1) ∈ ℕ)
4746nnrpd 13054 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑅 + 1) ∈ ℝ+)
4847, 27rpmulcld 13072 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝑅 + 1) · 𝑛) ∈ ℝ+)
4948relogcld 26589 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (log‘((𝑅 + 1) · 𝑛)) ∈ ℝ)
50 pire 26423 . . . . . . . 8 π ∈ ℝ
5150a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → π ∈ ℝ)
5249, 51readdcld 11269 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((log‘((𝑅 + 1) · 𝑛)) + π) ∈ ℝ)
5345, 52readdcld 11269 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)) ∈ ℝ)
5431, 38abs2dif2d 15482 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1)))) ≤ ((abs‘(𝑦 · (log‘((𝑛 + 1) / 𝑛)))) + (abs‘(log‘((𝑦 / 𝑛) + 1)))))
5523, 30absmuld 15478 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(𝑦 · (log‘((𝑛 + 1) / 𝑛)))) = ((abs‘𝑦) · (abs‘(log‘((𝑛 + 1) / 𝑛)))))
5628rpred 13056 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝑛 + 1) / 𝑛) ∈ ℝ)
5732mullidd 11258 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (1 · 𝑛) = 𝑛)
5824nnred 12260 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑛 ∈ ℝ)
5958lep1d 12178 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑛 ≤ (𝑛 + 1))
6057, 59eqbrtrd 5146 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (1 · 𝑛) ≤ (𝑛 + 1))
61 1red 11241 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 1 ∈ ℝ)
6258, 61readdcld 11269 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑛 + 1) ∈ ℝ)
6361, 62, 27lemuldivd 13105 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((1 · 𝑛) ≤ (𝑛 + 1) ↔ 1 ≤ ((𝑛 + 1) / 𝑛)))
6460, 63mpbid 232 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 1 ≤ ((𝑛 + 1) / 𝑛))
6556, 64logge0d 26596 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 0 ≤ (log‘((𝑛 + 1) / 𝑛)))
6629, 65absidd 15446 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(log‘((𝑛 + 1) / 𝑛))) = (log‘((𝑛 + 1) / 𝑛)))
6766oveq2d 7426 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘𝑦) · (abs‘(log‘((𝑛 + 1) / 𝑛)))) = ((abs‘𝑦) · (log‘((𝑛 + 1) / 𝑛))))
6855, 67eqtrd 2771 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(𝑦 · (log‘((𝑛 + 1) / 𝑛)))) = ((abs‘𝑦) · (log‘((𝑛 + 1) / 𝑛))))
6923abscld 15460 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘𝑦) ∈ ℝ)
70 fveq2 6881 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (abs‘𝑥) = (abs‘𝑦))
7170breq1d 5134 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((abs‘𝑥) ≤ 𝑅 ↔ (abs‘𝑦) ≤ 𝑅))
72 fvoveq1 7433 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (abs‘(𝑥 + 𝑘)) = (abs‘(𝑦 + 𝑘)))
7372breq2d 5136 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ (1 / 𝑅) ≤ (abs‘(𝑦 + 𝑘))))
7473ralbidv 3164 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑦 + 𝑘))))
7571, 74anbi12d 632 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘))) ↔ ((abs‘𝑦) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑦 + 𝑘)))))
7675, 6elrab2 3679 . . . . . . . . . . 11 (𝑦𝑈 ↔ (𝑦 ∈ ℂ ∧ ((abs‘𝑦) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑦 + 𝑘)))))
7776simprbi 496 . . . . . . . . . 10 (𝑦𝑈 → ((abs‘𝑦) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑦 + 𝑘))))
7877ad2antll 729 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘𝑦) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑦 + 𝑘))))
7978simpld 494 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘𝑦) ≤ 𝑅)
8069, 44, 29, 65, 79lemul1ad 12186 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘𝑦) · (log‘((𝑛 + 1) / 𝑛))) ≤ (𝑅 · (log‘((𝑛 + 1) / 𝑛))))
8168, 80eqbrtrd 5146 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(𝑦 · (log‘((𝑛 + 1) / 𝑛)))) ≤ (𝑅 · (log‘((𝑛 + 1) / 𝑛))))
8236, 37absrpcld 15472 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝑦 / 𝑛) + 1)) ∈ ℝ+)
8382relogcld 26589 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (log‘(abs‘((𝑦 / 𝑛) + 1))) ∈ ℝ)
8483recnd 11268 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (log‘(abs‘((𝑦 / 𝑛) + 1))) ∈ ℂ)
8584abscld 15460 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(log‘(abs‘((𝑦 / 𝑛) + 1)))) ∈ ℝ)
8685, 51readdcld 11269 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘(log‘(abs‘((𝑦 / 𝑛) + 1)))) + π) ∈ ℝ)
87 abslogle 26584 . . . . . . . 8 ((((𝑦 / 𝑛) + 1) ∈ ℂ ∧ ((𝑦 / 𝑛) + 1) ≠ 0) → (abs‘(log‘((𝑦 / 𝑛) + 1))) ≤ ((abs‘(log‘(abs‘((𝑦 / 𝑛) + 1)))) + π))
8836, 37, 87syl2anc 584 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(log‘((𝑦 / 𝑛) + 1))) ≤ ((abs‘(log‘(abs‘((𝑦 / 𝑛) + 1)))) + π))
89 1rp 13017 . . . . . . . . . . . 12 1 ∈ ℝ+
90 relogdiv 26559 . . . . . . . . . . . 12 ((1 ∈ ℝ+ ∧ ((𝑅 + 1) · 𝑛) ∈ ℝ+) → (log‘(1 / ((𝑅 + 1) · 𝑛))) = ((log‘1) − (log‘((𝑅 + 1) · 𝑛))))
9189, 48, 90sylancr 587 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (log‘(1 / ((𝑅 + 1) · 𝑛))) = ((log‘1) − (log‘((𝑅 + 1) · 𝑛))))
92 log1 26551 . . . . . . . . . . . . 13 (log‘1) = 0
9392oveq1i 7420 . . . . . . . . . . . 12 ((log‘1) − (log‘((𝑅 + 1) · 𝑛))) = (0 − (log‘((𝑅 + 1) · 𝑛)))
94 df-neg 11474 . . . . . . . . . . . 12 -(log‘((𝑅 + 1) · 𝑛)) = (0 − (log‘((𝑅 + 1) · 𝑛)))
9593, 94eqtr4i 2762 . . . . . . . . . . 11 ((log‘1) − (log‘((𝑅 + 1) · 𝑛))) = -(log‘((𝑅 + 1) · 𝑛))
9691, 95eqtr2di 2788 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → -(log‘((𝑅 + 1) · 𝑛)) = (log‘(1 / ((𝑅 + 1) · 𝑛))))
9746nnrecred 12296 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (1 / (𝑅 + 1)) ∈ ℝ)
9823, 32addcld 11259 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑦 + 𝑛) ∈ ℂ)
9998abscld 15460 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(𝑦 + 𝑛)) ∈ ℝ)
1004nnrecred 12296 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (1 / 𝑅) ∈ ℝ)
1014nnrpd 13054 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑅 ∈ ℝ+)
102 0le1 11765 . . . . . . . . . . . . . . . 16 0 ≤ 1
103102a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 0 ≤ 1)
10444lep1d 12178 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑅 ≤ (𝑅 + 1))
105101, 47, 61, 103, 104lediv2ad 13078 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (1 / (𝑅 + 1)) ≤ (1 / 𝑅))
106 oveq2 7418 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → (𝑦 + 𝑘) = (𝑦 + 𝑛))
107106fveq2d 6885 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → (abs‘(𝑦 + 𝑘)) = (abs‘(𝑦 + 𝑛)))
108107breq2d 5136 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → ((1 / 𝑅) ≤ (abs‘(𝑦 + 𝑘)) ↔ (1 / 𝑅) ≤ (abs‘(𝑦 + 𝑛))))
10978simprd 495 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑦 + 𝑘)))
11024nnnn0d 12567 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑛 ∈ ℕ0)
111108, 109, 110rspcdva 3607 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (1 / 𝑅) ≤ (abs‘(𝑦 + 𝑛)))
11297, 100, 99, 105, 111letrd 11397 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (1 / (𝑅 + 1)) ≤ (abs‘(𝑦 + 𝑛)))
11397, 99, 27, 112lediv1dd 13114 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((1 / (𝑅 + 1)) / 𝑛) ≤ ((abs‘(𝑦 + 𝑛)) / 𝑛))
11446nncnd 12261 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑅 + 1) ∈ ℂ)
11546nnne0d 12295 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑅 + 1) ≠ 0)
116114, 32, 115, 33recdiv2d 12040 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((1 / (𝑅 + 1)) / 𝑛) = (1 / ((𝑅 + 1) · 𝑛)))
11723, 32, 32, 33divdird 12060 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝑦 + 𝑛) / 𝑛) = ((𝑦 / 𝑛) + (𝑛 / 𝑛)))
11832, 33dividd 12020 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑛 / 𝑛) = 1)
119118oveq2d 7426 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝑦 / 𝑛) + (𝑛 / 𝑛)) = ((𝑦 / 𝑛) + 1))
120117, 119eqtr2d 2772 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝑦 / 𝑛) + 1) = ((𝑦 + 𝑛) / 𝑛))
121120fveq2d 6885 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝑦 / 𝑛) + 1)) = (abs‘((𝑦 + 𝑛) / 𝑛)))
12298, 32, 33absdivd 15479 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝑦 + 𝑛) / 𝑛)) = ((abs‘(𝑦 + 𝑛)) / (abs‘𝑛)))
12327rpge0d 13060 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 0 ≤ 𝑛)
12458, 123absidd 15446 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘𝑛) = 𝑛)
125124oveq2d 7426 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘(𝑦 + 𝑛)) / (abs‘𝑛)) = ((abs‘(𝑦 + 𝑛)) / 𝑛))
126121, 122, 1253eqtrrd 2776 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘(𝑦 + 𝑛)) / 𝑛) = (abs‘((𝑦 / 𝑛) + 1)))
127113, 116, 1263brtr3d 5155 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (1 / ((𝑅 + 1) · 𝑛)) ≤ (abs‘((𝑦 / 𝑛) + 1)))
12848rpreccld 13066 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (1 / ((𝑅 + 1) · 𝑛)) ∈ ℝ+)
129128, 82logled 26593 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((1 / ((𝑅 + 1) · 𝑛)) ≤ (abs‘((𝑦 / 𝑛) + 1)) ↔ (log‘(1 / ((𝑅 + 1) · 𝑛))) ≤ (log‘(abs‘((𝑦 / 𝑛) + 1)))))
130127, 129mpbid 232 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (log‘(1 / ((𝑅 + 1) · 𝑛))) ≤ (log‘(abs‘((𝑦 / 𝑛) + 1))))
13196, 130eqbrtrd 5146 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → -(log‘((𝑅 + 1) · 𝑛)) ≤ (log‘(abs‘((𝑦 / 𝑛) + 1))))
13236abscld 15460 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝑦 / 𝑛) + 1)) ∈ ℝ)
13344, 61readdcld 11269 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑅 + 1) ∈ ℝ)
13448rpred 13056 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝑅 + 1) · 𝑛) ∈ ℝ)
13534abscld 15460 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(𝑦 / 𝑛)) ∈ ℝ)
136135, 61readdcld 11269 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘(𝑦 / 𝑛)) + 1) ∈ ℝ)
13734, 35abstrid 15480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝑦 / 𝑛) + 1)) ≤ ((abs‘(𝑦 / 𝑛)) + (abs‘1)))
138 abs1 15321 . . . . . . . . . . . . . 14 (abs‘1) = 1
139138oveq2i 7421 . . . . . . . . . . . . 13 ((abs‘(𝑦 / 𝑛)) + (abs‘1)) = ((abs‘(𝑦 / 𝑛)) + 1)
140137, 139breqtrdi 5165 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝑦 / 𝑛) + 1)) ≤ ((abs‘(𝑦 / 𝑛)) + 1))
14189a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 1 ∈ ℝ+)
14223absge0d 15468 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 0 ≤ (abs‘𝑦))
14324nnge1d 12293 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 1 ≤ 𝑛)
14469, 44, 141, 58, 142, 79, 143lediv12ad 13115 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘𝑦) / 𝑛) ≤ (𝑅 / 1))
14523, 32, 33absdivd 15479 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(𝑦 / 𝑛)) = ((abs‘𝑦) / (abs‘𝑛)))
146124oveq2d 7426 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘𝑦) / (abs‘𝑛)) = ((abs‘𝑦) / 𝑛))
147145, 146eqtr2d 2772 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘𝑦) / 𝑛) = (abs‘(𝑦 / 𝑛)))
1484nncnd 12261 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑅 ∈ ℂ)
149148div1d 12014 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑅 / 1) = 𝑅)
150144, 147, 1493brtr3d 5155 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(𝑦 / 𝑛)) ≤ 𝑅)
151135, 44, 61, 150leadd1dd 11856 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘(𝑦 / 𝑛)) + 1) ≤ (𝑅 + 1))
152132, 136, 133, 140, 151letrd 11397 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝑦 / 𝑛) + 1)) ≤ (𝑅 + 1))
15347rpge0d 13060 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 0 ≤ (𝑅 + 1))
154133, 58, 153, 143lemulge11d 12184 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑅 + 1) ≤ ((𝑅 + 1) · 𝑛))
155132, 133, 134, 152, 154letrd 11397 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝑦 / 𝑛) + 1)) ≤ ((𝑅 + 1) · 𝑛))
15682, 48logled 26593 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘((𝑦 / 𝑛) + 1)) ≤ ((𝑅 + 1) · 𝑛) ↔ (log‘(abs‘((𝑦 / 𝑛) + 1))) ≤ (log‘((𝑅 + 1) · 𝑛))))
157155, 156mpbid 232 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (log‘(abs‘((𝑦 / 𝑛) + 1))) ≤ (log‘((𝑅 + 1) · 𝑛)))
15883, 49absled 15454 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘(log‘(abs‘((𝑦 / 𝑛) + 1)))) ≤ (log‘((𝑅 + 1) · 𝑛)) ↔ (-(log‘((𝑅 + 1) · 𝑛)) ≤ (log‘(abs‘((𝑦 / 𝑛) + 1))) ∧ (log‘(abs‘((𝑦 / 𝑛) + 1))) ≤ (log‘((𝑅 + 1) · 𝑛)))))
159131, 157, 158mpbir2and 713 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(log‘(abs‘((𝑦 / 𝑛) + 1)))) ≤ (log‘((𝑅 + 1) · 𝑛)))
16085, 49, 51, 159leadd1dd 11856 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘(log‘(abs‘((𝑦 / 𝑛) + 1)))) + π) ≤ ((log‘((𝑅 + 1) · 𝑛)) + π))
16142, 86, 52, 88, 160letrd 11397 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(log‘((𝑦 / 𝑛) + 1))) ≤ ((log‘((𝑅 + 1) · 𝑛)) + π))
16241, 42, 45, 52, 81, 161le2addd 11861 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘(𝑦 · (log‘((𝑛 + 1) / 𝑛)))) + (abs‘(log‘((𝑦 / 𝑛) + 1)))) ≤ ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)))
16340, 43, 53, 54, 162letrd 11397 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1)))) ≤ ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)))
164163adantr 480 . . 3 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) ∧ ¬ (2 · 𝑅) ≤ 𝑛) → (abs‘((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1)))) ≤ ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)))
1651, 2, 19, 164ifbothda 4544 . 2 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1)))) ≤ if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))))
166 oveq1 7417 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝑚 + 1) = (𝑛 + 1))
167 id 22 . . . . . . . . . . . 12 (𝑚 = 𝑛𝑚 = 𝑛)
168166, 167oveq12d 7428 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((𝑚 + 1) / 𝑚) = ((𝑛 + 1) / 𝑛))
169168fveq2d 6885 . . . . . . . . . 10 (𝑚 = 𝑛 → (log‘((𝑚 + 1) / 𝑚)) = (log‘((𝑛 + 1) / 𝑛)))
170169oveq2d 7426 . . . . . . . . 9 (𝑚 = 𝑛 → (𝑧 · (log‘((𝑚 + 1) / 𝑚))) = (𝑧 · (log‘((𝑛 + 1) / 𝑛))))
171 oveq2 7418 . . . . . . . . . 10 (𝑚 = 𝑛 → (𝑧 / 𝑚) = (𝑧 / 𝑛))
172171fvoveq1d 7432 . . . . . . . . 9 (𝑚 = 𝑛 → (log‘((𝑧 / 𝑚) + 1)) = (log‘((𝑧 / 𝑛) + 1)))
173170, 172oveq12d 7428 . . . . . . . 8 (𝑚 = 𝑛 → ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) = ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))))
174173mpteq2dv 5220 . . . . . . 7 (𝑚 = 𝑛 → (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))) = (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1)))))
175 lgamgulm.g . . . . . . 7 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))
176 cnex 11215 . . . . . . . . 9 ℂ ∈ V
1776, 176rabex2 5316 . . . . . . . 8 𝑈 ∈ V
178177mptex 7220 . . . . . . 7 (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1)))) ∈ V
179174, 175, 178fvmpt 6991 . . . . . 6 (𝑛 ∈ ℕ → (𝐺𝑛) = (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1)))))
180179ad2antrl 728 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝐺𝑛) = (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1)))))
181180fveq1d 6883 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝐺𝑛)‘𝑦) = ((𝑧𝑈 ↦ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))))‘𝑦))
182 oveq1 7417 . . . . . . 7 (𝑧 = 𝑦 → (𝑧 · (log‘((𝑛 + 1) / 𝑛))) = (𝑦 · (log‘((𝑛 + 1) / 𝑛))))
183 oveq1 7417 . . . . . . . 8 (𝑧 = 𝑦 → (𝑧 / 𝑛) = (𝑦 / 𝑛))
184183fvoveq1d 7432 . . . . . . 7 (𝑧 = 𝑦 → (log‘((𝑧 / 𝑛) + 1)) = (log‘((𝑦 / 𝑛) + 1)))
185182, 184oveq12d 7428 . . . . . 6 (𝑧 = 𝑦 → ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) = ((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1))))
186 eqid 2736 . . . . . 6 (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1)))) = (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))))
187 ovex 7443 . . . . . 6 ((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1))) ∈ V
188185, 186, 187fvmpt 6991 . . . . 5 (𝑦𝑈 → ((𝑧𝑈 ↦ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))))‘𝑦) = ((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1))))
189188ad2antll 729 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝑧𝑈 ↦ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))))‘𝑦) = ((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1))))
190181, 189eqtrd 2771 . . 3 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝐺𝑛)‘𝑦) = ((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1))))
191190fveq2d 6885 . 2 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝐺𝑛)‘𝑦)) = (abs‘((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1)))))
192 breq2 5128 . . . . 5 (𝑚 = 𝑛 → ((2 · 𝑅) ≤ 𝑚 ↔ (2 · 𝑅) ≤ 𝑛))
193 oveq1 7417 . . . . . . 7 (𝑚 = 𝑛 → (𝑚↑2) = (𝑛↑2))
194193oveq2d 7426 . . . . . 6 (𝑚 = 𝑛 → ((2 · (𝑅 + 1)) / (𝑚↑2)) = ((2 · (𝑅 + 1)) / (𝑛↑2)))
195194oveq2d 7426 . . . . 5 (𝑚 = 𝑛 → (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))) = (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))))
196169oveq2d 7426 . . . . . 6 (𝑚 = 𝑛 → (𝑅 · (log‘((𝑚 + 1) / 𝑚))) = (𝑅 · (log‘((𝑛 + 1) / 𝑛))))
197 oveq2 7418 . . . . . . . 8 (𝑚 = 𝑛 → ((𝑅 + 1) · 𝑚) = ((𝑅 + 1) · 𝑛))
198197fveq2d 6885 . . . . . . 7 (𝑚 = 𝑛 → (log‘((𝑅 + 1) · 𝑚)) = (log‘((𝑅 + 1) · 𝑛)))
199198oveq1d 7425 . . . . . 6 (𝑚 = 𝑛 → ((log‘((𝑅 + 1) · 𝑚)) + π) = ((log‘((𝑅 + 1) · 𝑛)) + π))
200196, 199oveq12d 7428 . . . . 5 (𝑚 = 𝑛 → ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π)) = ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)))
201192, 195, 200ifbieq12d 4534 . . . 4 (𝑚 = 𝑛 → if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π))) = if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))))
202 lgamgulm.t . . . 4 𝑇 = (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π))))
203 ovex 7443 . . . . 5 (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))) ∈ V
204 ovex 7443 . . . . 5 ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)) ∈ V
205203, 204ifex 4556 . . . 4 if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))) ∈ V
206201, 202, 205fvmpt 6991 . . 3 (𝑛 ∈ ℕ → (𝑇𝑛) = if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))))
207206ad2antrl 728 . 2 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑇𝑛) = if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))))
208165, 191, 2073brtr4d 5156 1 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝐺𝑛)‘𝑦)) ≤ (𝑇𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2933  wral 3052  {crab 3420  cdif 3928  wss 3931  ifcif 4505   class class class wbr 5124  cmpt 5206  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139  cle 11275  cmin 11471  -cneg 11472   / cdiv 11899  cn 12245  2c2 12300  0cn0 12506  cz 12593  +crp 13013  cexp 14084  abscabs 15258  πcpi 16087  logclog 26520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-shft 15091  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-limsup 15492  df-clim 15509  df-rlim 15510  df-sum 15708  df-ef 16088  df-sin 16090  df-cos 16091  df-tan 16092  df-pi 16093  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cn 23170  df-cnp 23171  df-haus 23258  df-cmp 23330  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-limc 25824  df-dv 25825  df-log 26522
This theorem is referenced by:  lgamgulmlem6  27001
  Copyright terms: Public domain W3C validator