MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgamgulmlem5 Structured version   Visualization version   GIF version

Theorem lgamgulmlem5 25050
Description: Lemma for lgamgulm 25052. (Contributed by Mario Carneiro, 3-Jul-2017.)
Hypotheses
Ref Expression
lgamgulm.r (𝜑𝑅 ∈ ℕ)
lgamgulm.u 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
lgamgulm.g 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))
lgamgulm.t 𝑇 = (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π))))
Assertion
Ref Expression
lgamgulmlem5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝐺𝑛)‘𝑦)) ≤ (𝑇𝑛))
Distinct variable groups:   𝑦,𝑛,𝐺   𝑥,𝑦   𝑘,𝑚,𝑛,𝑥,𝑦,𝑧,𝑅   𝑈,𝑚,𝑛,𝑦,𝑧   𝜑,𝑚,𝑛,𝑥,𝑦,𝑧   𝑇,𝑛,𝑦
Allowed substitution hints:   𝜑(𝑘)   𝑇(𝑥,𝑧,𝑘,𝑚)   𝑈(𝑥,𝑘)   𝐺(𝑥,𝑧,𝑘,𝑚)

Proof of Theorem lgamgulmlem5
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 breq2 4813 . . 3 ((𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))) = if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))) → ((abs‘((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1)))) ≤ (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))) ↔ (abs‘((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1)))) ≤ if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)))))
2 breq2 4813 . . 3 (((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)) = if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))) → ((abs‘((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1)))) ≤ ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)) ↔ (abs‘((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1)))) ≤ if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)))))
3 lgamgulm.r . . . . . 6 (𝜑𝑅 ∈ ℕ)
43adantr 472 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑅 ∈ ℕ)
54adantr 472 . . . 4 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) ∧ (2 · 𝑅) ≤ 𝑛) → 𝑅 ∈ ℕ)
6 lgamgulm.u . . . . 5 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
7 fveq2 6375 . . . . . . . 8 (𝑥 = 𝑡 → (abs‘𝑥) = (abs‘𝑡))
87breq1d 4819 . . . . . . 7 (𝑥 = 𝑡 → ((abs‘𝑥) ≤ 𝑅 ↔ (abs‘𝑡) ≤ 𝑅))
9 fvoveq1 6865 . . . . . . . . 9 (𝑥 = 𝑡 → (abs‘(𝑥 + 𝑘)) = (abs‘(𝑡 + 𝑘)))
109breq2d 4821 . . . . . . . 8 (𝑥 = 𝑡 → ((1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ (1 / 𝑅) ≤ (abs‘(𝑡 + 𝑘))))
1110ralbidv 3133 . . . . . . 7 (𝑥 = 𝑡 → (∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑡 + 𝑘))))
128, 11anbi12d 624 . . . . . 6 (𝑥 = 𝑡 → (((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘))) ↔ ((abs‘𝑡) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑡 + 𝑘)))))
1312cbvrabv 3348 . . . . 5 {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} = {𝑡 ∈ ℂ ∣ ((abs‘𝑡) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑡 + 𝑘)))}
146, 13eqtri 2787 . . . 4 𝑈 = {𝑡 ∈ ℂ ∣ ((abs‘𝑡) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑡 + 𝑘)))}
15 simplrl 795 . . . 4 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) ∧ (2 · 𝑅) ≤ 𝑛) → 𝑛 ∈ ℕ)
16 simprr 789 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑦𝑈)
1716adantr 472 . . . 4 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) ∧ (2 · 𝑅) ≤ 𝑛) → 𝑦𝑈)
18 simpr 477 . . . 4 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) ∧ (2 · 𝑅) ≤ 𝑛) → (2 · 𝑅) ≤ 𝑛)
195, 14, 15, 17, 18lgamgulmlem3 25048 . . 3 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) ∧ (2 · 𝑅) ≤ 𝑛) → (abs‘((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1)))) ≤ (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))))
203, 6lgamgulmlem1 25046 . . . . . . . . . . 11 (𝜑𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
2120adantr 472 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
2221, 16sseldd 3762 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑦 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
2322eldifad 3744 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑦 ∈ ℂ)
24 simprl 787 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑛 ∈ ℕ)
2524peano2nnd 11293 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑛 + 1) ∈ ℕ)
2625nnrpd 12068 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑛 + 1) ∈ ℝ+)
2724nnrpd 12068 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑛 ∈ ℝ+)
2826, 27rpdivcld 12087 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝑛 + 1) / 𝑛) ∈ ℝ+)
2928relogcld 24660 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (log‘((𝑛 + 1) / 𝑛)) ∈ ℝ)
3029recnd 10322 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (log‘((𝑛 + 1) / 𝑛)) ∈ ℂ)
3123, 30mulcld 10314 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑦 · (log‘((𝑛 + 1) / 𝑛))) ∈ ℂ)
3224nncnd 11292 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑛 ∈ ℂ)
3324nnne0d 11322 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑛 ≠ 0)
3423, 32, 33divcld 11055 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑦 / 𝑛) ∈ ℂ)
35 1cnd 10288 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 1 ∈ ℂ)
3634, 35addcld 10313 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝑦 / 𝑛) + 1) ∈ ℂ)
3722, 24dmgmdivn0 25045 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝑦 / 𝑛) + 1) ≠ 0)
3836, 37logcld 24608 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (log‘((𝑦 / 𝑛) + 1)) ∈ ℂ)
3931, 38subcld 10646 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1))) ∈ ℂ)
4039abscld 14462 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1)))) ∈ ℝ)
4131abscld 14462 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(𝑦 · (log‘((𝑛 + 1) / 𝑛)))) ∈ ℝ)
4238abscld 14462 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(log‘((𝑦 / 𝑛) + 1))) ∈ ℝ)
4341, 42readdcld 10323 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘(𝑦 · (log‘((𝑛 + 1) / 𝑛)))) + (abs‘(log‘((𝑦 / 𝑛) + 1)))) ∈ ℝ)
444nnred 11291 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑅 ∈ ℝ)
4544, 29remulcld 10324 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑅 · (log‘((𝑛 + 1) / 𝑛))) ∈ ℝ)
464peano2nnd 11293 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑅 + 1) ∈ ℕ)
4746nnrpd 12068 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑅 + 1) ∈ ℝ+)
4847, 27rpmulcld 12086 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝑅 + 1) · 𝑛) ∈ ℝ+)
4948relogcld 24660 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (log‘((𝑅 + 1) · 𝑛)) ∈ ℝ)
50 pire 24502 . . . . . . . 8 π ∈ ℝ
5150a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → π ∈ ℝ)
5249, 51readdcld 10323 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((log‘((𝑅 + 1) · 𝑛)) + π) ∈ ℝ)
5345, 52readdcld 10323 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)) ∈ ℝ)
5431, 38abs2dif2d 14484 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1)))) ≤ ((abs‘(𝑦 · (log‘((𝑛 + 1) / 𝑛)))) + (abs‘(log‘((𝑦 / 𝑛) + 1)))))
5523, 30absmuld 14480 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(𝑦 · (log‘((𝑛 + 1) / 𝑛)))) = ((abs‘𝑦) · (abs‘(log‘((𝑛 + 1) / 𝑛)))))
5628rpred 12070 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝑛 + 1) / 𝑛) ∈ ℝ)
5732mulid2d 10312 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (1 · 𝑛) = 𝑛)
5824nnred 11291 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑛 ∈ ℝ)
5958lep1d 11209 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑛 ≤ (𝑛 + 1))
6057, 59eqbrtrd 4831 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (1 · 𝑛) ≤ (𝑛 + 1))
61 1red 10294 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 1 ∈ ℝ)
6258, 61readdcld 10323 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑛 + 1) ∈ ℝ)
6361, 62, 27lemuldivd 12119 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((1 · 𝑛) ≤ (𝑛 + 1) ↔ 1 ≤ ((𝑛 + 1) / 𝑛)))
6460, 63mpbid 223 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 1 ≤ ((𝑛 + 1) / 𝑛))
6556, 64logge0d 24667 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 0 ≤ (log‘((𝑛 + 1) / 𝑛)))
6629, 65absidd 14448 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(log‘((𝑛 + 1) / 𝑛))) = (log‘((𝑛 + 1) / 𝑛)))
6766oveq2d 6858 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘𝑦) · (abs‘(log‘((𝑛 + 1) / 𝑛)))) = ((abs‘𝑦) · (log‘((𝑛 + 1) / 𝑛))))
6855, 67eqtrd 2799 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(𝑦 · (log‘((𝑛 + 1) / 𝑛)))) = ((abs‘𝑦) · (log‘((𝑛 + 1) / 𝑛))))
6923abscld 14462 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘𝑦) ∈ ℝ)
70 fveq2 6375 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (abs‘𝑥) = (abs‘𝑦))
7170breq1d 4819 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((abs‘𝑥) ≤ 𝑅 ↔ (abs‘𝑦) ≤ 𝑅))
72 fvoveq1 6865 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (abs‘(𝑥 + 𝑘)) = (abs‘(𝑦 + 𝑘)))
7372breq2d 4821 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ (1 / 𝑅) ≤ (abs‘(𝑦 + 𝑘))))
7473ralbidv 3133 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑦 + 𝑘))))
7571, 74anbi12d 624 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘))) ↔ ((abs‘𝑦) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑦 + 𝑘)))))
7675, 6elrab2 3523 . . . . . . . . . . 11 (𝑦𝑈 ↔ (𝑦 ∈ ℂ ∧ ((abs‘𝑦) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑦 + 𝑘)))))
7776simprbi 490 . . . . . . . . . 10 (𝑦𝑈 → ((abs‘𝑦) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑦 + 𝑘))))
7877ad2antll 720 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘𝑦) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑦 + 𝑘))))
7978simpld 488 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘𝑦) ≤ 𝑅)
8069, 44, 29, 65, 79lemul1ad 11217 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘𝑦) · (log‘((𝑛 + 1) / 𝑛))) ≤ (𝑅 · (log‘((𝑛 + 1) / 𝑛))))
8168, 80eqbrtrd 4831 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(𝑦 · (log‘((𝑛 + 1) / 𝑛)))) ≤ (𝑅 · (log‘((𝑛 + 1) / 𝑛))))
8236, 37absrpcld 14474 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝑦 / 𝑛) + 1)) ∈ ℝ+)
8382relogcld 24660 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (log‘(abs‘((𝑦 / 𝑛) + 1))) ∈ ℝ)
8483recnd 10322 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (log‘(abs‘((𝑦 / 𝑛) + 1))) ∈ ℂ)
8584abscld 14462 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(log‘(abs‘((𝑦 / 𝑛) + 1)))) ∈ ℝ)
8685, 51readdcld 10323 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘(log‘(abs‘((𝑦 / 𝑛) + 1)))) + π) ∈ ℝ)
87 abslogle 24655 . . . . . . . 8 ((((𝑦 / 𝑛) + 1) ∈ ℂ ∧ ((𝑦 / 𝑛) + 1) ≠ 0) → (abs‘(log‘((𝑦 / 𝑛) + 1))) ≤ ((abs‘(log‘(abs‘((𝑦 / 𝑛) + 1)))) + π))
8836, 37, 87syl2anc 579 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(log‘((𝑦 / 𝑛) + 1))) ≤ ((abs‘(log‘(abs‘((𝑦 / 𝑛) + 1)))) + π))
89 1rp 12032 . . . . . . . . . . . 12 1 ∈ ℝ+
90 relogdiv 24630 . . . . . . . . . . . 12 ((1 ∈ ℝ+ ∧ ((𝑅 + 1) · 𝑛) ∈ ℝ+) → (log‘(1 / ((𝑅 + 1) · 𝑛))) = ((log‘1) − (log‘((𝑅 + 1) · 𝑛))))
9189, 48, 90sylancr 581 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (log‘(1 / ((𝑅 + 1) · 𝑛))) = ((log‘1) − (log‘((𝑅 + 1) · 𝑛))))
92 log1 24623 . . . . . . . . . . . . 13 (log‘1) = 0
9392oveq1i 6852 . . . . . . . . . . . 12 ((log‘1) − (log‘((𝑅 + 1) · 𝑛))) = (0 − (log‘((𝑅 + 1) · 𝑛)))
94 df-neg 10523 . . . . . . . . . . . 12 -(log‘((𝑅 + 1) · 𝑛)) = (0 − (log‘((𝑅 + 1) · 𝑛)))
9593, 94eqtr4i 2790 . . . . . . . . . . 11 ((log‘1) − (log‘((𝑅 + 1) · 𝑛))) = -(log‘((𝑅 + 1) · 𝑛))
9691, 95syl6req 2816 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → -(log‘((𝑅 + 1) · 𝑛)) = (log‘(1 / ((𝑅 + 1) · 𝑛))))
9746nnrecred 11323 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (1 / (𝑅 + 1)) ∈ ℝ)
9823, 32addcld 10313 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑦 + 𝑛) ∈ ℂ)
9998abscld 14462 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(𝑦 + 𝑛)) ∈ ℝ)
1004nnrecred 11323 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (1 / 𝑅) ∈ ℝ)
1014nnrpd 12068 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑅 ∈ ℝ+)
102 0le1 10805 . . . . . . . . . . . . . . . 16 0 ≤ 1
103102a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 0 ≤ 1)
10444lep1d 11209 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑅 ≤ (𝑅 + 1))
105101, 47, 61, 103, 104lediv2ad 12092 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (1 / (𝑅 + 1)) ≤ (1 / 𝑅))
106 oveq2 6850 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → (𝑦 + 𝑘) = (𝑦 + 𝑛))
107106fveq2d 6379 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → (abs‘(𝑦 + 𝑘)) = (abs‘(𝑦 + 𝑛)))
108107breq2d 4821 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → ((1 / 𝑅) ≤ (abs‘(𝑦 + 𝑘)) ↔ (1 / 𝑅) ≤ (abs‘(𝑦 + 𝑛))))
10978simprd 489 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑦 + 𝑘)))
11024nnnn0d 11598 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑛 ∈ ℕ0)
111108, 109, 110rspcdva 3467 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (1 / 𝑅) ≤ (abs‘(𝑦 + 𝑛)))
11297, 100, 99, 105, 111letrd 10448 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (1 / (𝑅 + 1)) ≤ (abs‘(𝑦 + 𝑛)))
11397, 99, 27, 112lediv1dd 12128 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((1 / (𝑅 + 1)) / 𝑛) ≤ ((abs‘(𝑦 + 𝑛)) / 𝑛))
11446nncnd 11292 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑅 + 1) ∈ ℂ)
11546nnne0d 11322 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑅 + 1) ≠ 0)
116114, 32, 115, 33recdiv2d 11073 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((1 / (𝑅 + 1)) / 𝑛) = (1 / ((𝑅 + 1) · 𝑛)))
11723, 32, 32, 33divdird 11093 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝑦 + 𝑛) / 𝑛) = ((𝑦 / 𝑛) + (𝑛 / 𝑛)))
11832, 33dividd 11053 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑛 / 𝑛) = 1)
119118oveq2d 6858 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝑦 / 𝑛) + (𝑛 / 𝑛)) = ((𝑦 / 𝑛) + 1))
120117, 119eqtr2d 2800 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝑦 / 𝑛) + 1) = ((𝑦 + 𝑛) / 𝑛))
121120fveq2d 6379 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝑦 / 𝑛) + 1)) = (abs‘((𝑦 + 𝑛) / 𝑛)))
12298, 32, 33absdivd 14481 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝑦 + 𝑛) / 𝑛)) = ((abs‘(𝑦 + 𝑛)) / (abs‘𝑛)))
12327rpge0d 12074 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 0 ≤ 𝑛)
12458, 123absidd 14448 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘𝑛) = 𝑛)
125124oveq2d 6858 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘(𝑦 + 𝑛)) / (abs‘𝑛)) = ((abs‘(𝑦 + 𝑛)) / 𝑛))
126121, 122, 1253eqtrrd 2804 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘(𝑦 + 𝑛)) / 𝑛) = (abs‘((𝑦 / 𝑛) + 1)))
127113, 116, 1263brtr3d 4840 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (1 / ((𝑅 + 1) · 𝑛)) ≤ (abs‘((𝑦 / 𝑛) + 1)))
12848rpreccld 12080 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (1 / ((𝑅 + 1) · 𝑛)) ∈ ℝ+)
129128, 82logled 24664 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((1 / ((𝑅 + 1) · 𝑛)) ≤ (abs‘((𝑦 / 𝑛) + 1)) ↔ (log‘(1 / ((𝑅 + 1) · 𝑛))) ≤ (log‘(abs‘((𝑦 / 𝑛) + 1)))))
130127, 129mpbid 223 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (log‘(1 / ((𝑅 + 1) · 𝑛))) ≤ (log‘(abs‘((𝑦 / 𝑛) + 1))))
13196, 130eqbrtrd 4831 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → -(log‘((𝑅 + 1) · 𝑛)) ≤ (log‘(abs‘((𝑦 / 𝑛) + 1))))
13236abscld 14462 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝑦 / 𝑛) + 1)) ∈ ℝ)
13344, 61readdcld 10323 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑅 + 1) ∈ ℝ)
13448rpred 12070 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝑅 + 1) · 𝑛) ∈ ℝ)
13534abscld 14462 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(𝑦 / 𝑛)) ∈ ℝ)
136135, 61readdcld 10323 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘(𝑦 / 𝑛)) + 1) ∈ ℝ)
13734, 35abstrid 14482 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝑦 / 𝑛) + 1)) ≤ ((abs‘(𝑦 / 𝑛)) + (abs‘1)))
138 abs1 14324 . . . . . . . . . . . . . 14 (abs‘1) = 1
139138oveq2i 6853 . . . . . . . . . . . . 13 ((abs‘(𝑦 / 𝑛)) + (abs‘1)) = ((abs‘(𝑦 / 𝑛)) + 1)
140137, 139syl6breq 4850 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝑦 / 𝑛) + 1)) ≤ ((abs‘(𝑦 / 𝑛)) + 1))
14189a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 1 ∈ ℝ+)
14223absge0d 14470 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 0 ≤ (abs‘𝑦))
14324nnge1d 11320 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 1 ≤ 𝑛)
14469, 44, 141, 58, 142, 79, 143lediv12ad 12129 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘𝑦) / 𝑛) ≤ (𝑅 / 1))
14523, 32, 33absdivd 14481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(𝑦 / 𝑛)) = ((abs‘𝑦) / (abs‘𝑛)))
146124oveq2d 6858 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘𝑦) / (abs‘𝑛)) = ((abs‘𝑦) / 𝑛))
147145, 146eqtr2d 2800 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘𝑦) / 𝑛) = (abs‘(𝑦 / 𝑛)))
1484nncnd 11292 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑅 ∈ ℂ)
149148div1d 11047 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑅 / 1) = 𝑅)
150144, 147, 1493brtr3d 4840 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(𝑦 / 𝑛)) ≤ 𝑅)
151135, 44, 61, 150leadd1dd 10895 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘(𝑦 / 𝑛)) + 1) ≤ (𝑅 + 1))
152132, 136, 133, 140, 151letrd 10448 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝑦 / 𝑛) + 1)) ≤ (𝑅 + 1))
15347rpge0d 12074 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 0 ≤ (𝑅 + 1))
154133, 58, 153, 143lemulge11d 11215 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑅 + 1) ≤ ((𝑅 + 1) · 𝑛))
155132, 133, 134, 152, 154letrd 10448 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝑦 / 𝑛) + 1)) ≤ ((𝑅 + 1) · 𝑛))
15682, 48logled 24664 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘((𝑦 / 𝑛) + 1)) ≤ ((𝑅 + 1) · 𝑛) ↔ (log‘(abs‘((𝑦 / 𝑛) + 1))) ≤ (log‘((𝑅 + 1) · 𝑛))))
157155, 156mpbid 223 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (log‘(abs‘((𝑦 / 𝑛) + 1))) ≤ (log‘((𝑅 + 1) · 𝑛)))
15883, 49absled 14456 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘(log‘(abs‘((𝑦 / 𝑛) + 1)))) ≤ (log‘((𝑅 + 1) · 𝑛)) ↔ (-(log‘((𝑅 + 1) · 𝑛)) ≤ (log‘(abs‘((𝑦 / 𝑛) + 1))) ∧ (log‘(abs‘((𝑦 / 𝑛) + 1))) ≤ (log‘((𝑅 + 1) · 𝑛)))))
159131, 157, 158mpbir2and 704 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(log‘(abs‘((𝑦 / 𝑛) + 1)))) ≤ (log‘((𝑅 + 1) · 𝑛)))
16085, 49, 51, 159leadd1dd 10895 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘(log‘(abs‘((𝑦 / 𝑛) + 1)))) + π) ≤ ((log‘((𝑅 + 1) · 𝑛)) + π))
16142, 86, 52, 88, 160letrd 10448 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(log‘((𝑦 / 𝑛) + 1))) ≤ ((log‘((𝑅 + 1) · 𝑛)) + π))
16241, 42, 45, 52, 81, 161le2addd 10900 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘(𝑦 · (log‘((𝑛 + 1) / 𝑛)))) + (abs‘(log‘((𝑦 / 𝑛) + 1)))) ≤ ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)))
16340, 43, 53, 54, 162letrd 10448 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1)))) ≤ ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)))
164163adantr 472 . . 3 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) ∧ ¬ (2 · 𝑅) ≤ 𝑛) → (abs‘((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1)))) ≤ ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)))
1651, 2, 19, 164ifbothda 4280 . 2 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1)))) ≤ if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))))
166 oveq1 6849 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝑚 + 1) = (𝑛 + 1))
167 id 22 . . . . . . . . . . . 12 (𝑚 = 𝑛𝑚 = 𝑛)
168166, 167oveq12d 6860 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((𝑚 + 1) / 𝑚) = ((𝑛 + 1) / 𝑛))
169168fveq2d 6379 . . . . . . . . . 10 (𝑚 = 𝑛 → (log‘((𝑚 + 1) / 𝑚)) = (log‘((𝑛 + 1) / 𝑛)))
170169oveq2d 6858 . . . . . . . . 9 (𝑚 = 𝑛 → (𝑧 · (log‘((𝑚 + 1) / 𝑚))) = (𝑧 · (log‘((𝑛 + 1) / 𝑛))))
171 oveq2 6850 . . . . . . . . . 10 (𝑚 = 𝑛 → (𝑧 / 𝑚) = (𝑧 / 𝑛))
172171fvoveq1d 6864 . . . . . . . . 9 (𝑚 = 𝑛 → (log‘((𝑧 / 𝑚) + 1)) = (log‘((𝑧 / 𝑛) + 1)))
173170, 172oveq12d 6860 . . . . . . . 8 (𝑚 = 𝑛 → ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) = ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))))
174173mpteq2dv 4904 . . . . . . 7 (𝑚 = 𝑛 → (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))) = (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1)))))
175 lgamgulm.g . . . . . . 7 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))
176 cnex 10270 . . . . . . . . 9 ℂ ∈ V
1776, 176rabex2 4975 . . . . . . . 8 𝑈 ∈ V
178177mptex 6679 . . . . . . 7 (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1)))) ∈ V
179174, 175, 178fvmpt 6471 . . . . . 6 (𝑛 ∈ ℕ → (𝐺𝑛) = (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1)))))
180179ad2antrl 719 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝐺𝑛) = (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1)))))
181180fveq1d 6377 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝐺𝑛)‘𝑦) = ((𝑧𝑈 ↦ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))))‘𝑦))
182 oveq1 6849 . . . . . . 7 (𝑧 = 𝑦 → (𝑧 · (log‘((𝑛 + 1) / 𝑛))) = (𝑦 · (log‘((𝑛 + 1) / 𝑛))))
183 oveq1 6849 . . . . . . . 8 (𝑧 = 𝑦 → (𝑧 / 𝑛) = (𝑦 / 𝑛))
184183fvoveq1d 6864 . . . . . . 7 (𝑧 = 𝑦 → (log‘((𝑧 / 𝑛) + 1)) = (log‘((𝑦 / 𝑛) + 1)))
185182, 184oveq12d 6860 . . . . . 6 (𝑧 = 𝑦 → ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) = ((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1))))
186 eqid 2765 . . . . . 6 (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1)))) = (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))))
187 ovex 6874 . . . . . 6 ((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1))) ∈ V
188185, 186, 187fvmpt 6471 . . . . 5 (𝑦𝑈 → ((𝑧𝑈 ↦ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))))‘𝑦) = ((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1))))
189188ad2antll 720 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝑧𝑈 ↦ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))))‘𝑦) = ((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1))))
190181, 189eqtrd 2799 . . 3 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝐺𝑛)‘𝑦) = ((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1))))
191190fveq2d 6379 . 2 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝐺𝑛)‘𝑦)) = (abs‘((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1)))))
192 breq2 4813 . . . . 5 (𝑚 = 𝑛 → ((2 · 𝑅) ≤ 𝑚 ↔ (2 · 𝑅) ≤ 𝑛))
193 oveq1 6849 . . . . . . 7 (𝑚 = 𝑛 → (𝑚↑2) = (𝑛↑2))
194193oveq2d 6858 . . . . . 6 (𝑚 = 𝑛 → ((2 · (𝑅 + 1)) / (𝑚↑2)) = ((2 · (𝑅 + 1)) / (𝑛↑2)))
195194oveq2d 6858 . . . . 5 (𝑚 = 𝑛 → (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))) = (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))))
196169oveq2d 6858 . . . . . 6 (𝑚 = 𝑛 → (𝑅 · (log‘((𝑚 + 1) / 𝑚))) = (𝑅 · (log‘((𝑛 + 1) / 𝑛))))
197 oveq2 6850 . . . . . . . 8 (𝑚 = 𝑛 → ((𝑅 + 1) · 𝑚) = ((𝑅 + 1) · 𝑛))
198197fveq2d 6379 . . . . . . 7 (𝑚 = 𝑛 → (log‘((𝑅 + 1) · 𝑚)) = (log‘((𝑅 + 1) · 𝑛)))
199198oveq1d 6857 . . . . . 6 (𝑚 = 𝑛 → ((log‘((𝑅 + 1) · 𝑚)) + π) = ((log‘((𝑅 + 1) · 𝑛)) + π))
200196, 199oveq12d 6860 . . . . 5 (𝑚 = 𝑛 → ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π)) = ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)))
201192, 195, 200ifbieq12d 4270 . . . 4 (𝑚 = 𝑛 → if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π))) = if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))))
202 lgamgulm.t . . . 4 𝑇 = (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π))))
203 ovex 6874 . . . . 5 (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))) ∈ V
204 ovex 6874 . . . . 5 ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)) ∈ V
205203, 204ifex 4291 . . . 4 if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))) ∈ V
206201, 202, 205fvmpt 6471 . . 3 (𝑛 ∈ ℕ → (𝑇𝑛) = if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))))
207206ad2antrl 719 . 2 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑇𝑛) = if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))))
208165, 191, 2073brtr4d 4841 1 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝐺𝑛)‘𝑦)) ≤ (𝑇𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1652  wcel 2155  wne 2937  wral 3055  {crab 3059  cdif 3729  wss 3732  ifcif 4243   class class class wbr 4809  cmpt 4888  cfv 6068  (class class class)co 6842  cc 10187  cr 10188  0cc0 10189  1c1 10190   + caddc 10192   · cmul 10194  cle 10329  cmin 10520  -cneg 10521   / cdiv 10938  cn 11274  2c2 11327  0cn0 11538  cz 11624  +crp 12028  cexp 13067  abscabs 14261  πcpi 15081  logclog 24592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267  ax-addf 10268  ax-mulf 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-fi 8524  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-ioo 12381  df-ioc 12382  df-ico 12383  df-icc 12384  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-shft 14094  df-cj 14126  df-re 14127  df-im 14128  df-sqrt 14262  df-abs 14263  df-limsup 14489  df-clim 14506  df-rlim 14507  df-sum 14704  df-ef 15082  df-sin 15084  df-cos 15085  df-tan 15086  df-pi 15087  df-struct 16134  df-ndx 16135  df-slot 16136  df-base 16138  df-sets 16139  df-ress 16140  df-plusg 16229  df-mulr 16230  df-starv 16231  df-sca 16232  df-vsca 16233  df-ip 16234  df-tset 16235  df-ple 16236  df-ds 16238  df-unif 16239  df-hom 16240  df-cco 16241  df-rest 16351  df-topn 16352  df-0g 16370  df-gsum 16371  df-topgen 16372  df-pt 16373  df-prds 16376  df-xrs 16430  df-qtop 16435  df-imas 16436  df-xps 16438  df-mre 16514  df-mrc 16515  df-acs 16517  df-mgm 17510  df-sgrp 17552  df-mnd 17563  df-submnd 17604  df-mulg 17810  df-cntz 18015  df-cmn 18461  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-fbas 20016  df-fg 20017  df-cnfld 20020  df-top 20978  df-topon 20995  df-topsp 21017  df-bases 21030  df-cld 21103  df-ntr 21104  df-cls 21105  df-nei 21182  df-lp 21220  df-perf 21221  df-cn 21311  df-cnp 21312  df-haus 21399  df-cmp 21470  df-tx 21645  df-hmeo 21838  df-fil 21929  df-fm 22021  df-flim 22022  df-flf 22023  df-xms 22404  df-ms 22405  df-tms 22406  df-cncf 22960  df-limc 23921  df-dv 23922  df-log 24594
This theorem is referenced by:  lgamgulmlem6  25051
  Copyright terms: Public domain W3C validator