MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgamgulmlem5 Structured version   Visualization version   GIF version

Theorem lgamgulmlem5 25618
Description: Lemma for lgamgulm 25620. (Contributed by Mario Carneiro, 3-Jul-2017.)
Hypotheses
Ref Expression
lgamgulm.r (𝜑𝑅 ∈ ℕ)
lgamgulm.u 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
lgamgulm.g 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))
lgamgulm.t 𝑇 = (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π))))
Assertion
Ref Expression
lgamgulmlem5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝐺𝑛)‘𝑦)) ≤ (𝑇𝑛))
Distinct variable groups:   𝑦,𝑛,𝐺   𝑥,𝑦   𝑘,𝑚,𝑛,𝑥,𝑦,𝑧,𝑅   𝑈,𝑚,𝑛,𝑦,𝑧   𝜑,𝑚,𝑛,𝑥,𝑦,𝑧   𝑇,𝑛,𝑦
Allowed substitution hints:   𝜑(𝑘)   𝑇(𝑥,𝑧,𝑘,𝑚)   𝑈(𝑥,𝑘)   𝐺(𝑥,𝑧,𝑘,𝑚)

Proof of Theorem lgamgulmlem5
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 breq2 5034 . . 3 ((𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))) = if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))) → ((abs‘((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1)))) ≤ (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))) ↔ (abs‘((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1)))) ≤ if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)))))
2 breq2 5034 . . 3 (((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)) = if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))) → ((abs‘((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1)))) ≤ ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)) ↔ (abs‘((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1)))) ≤ if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)))))
3 lgamgulm.r . . . . . 6 (𝜑𝑅 ∈ ℕ)
43adantr 484 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑅 ∈ ℕ)
54adantr 484 . . . 4 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) ∧ (2 · 𝑅) ≤ 𝑛) → 𝑅 ∈ ℕ)
6 lgamgulm.u . . . . 5 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
7 fveq2 6645 . . . . . . . 8 (𝑥 = 𝑡 → (abs‘𝑥) = (abs‘𝑡))
87breq1d 5040 . . . . . . 7 (𝑥 = 𝑡 → ((abs‘𝑥) ≤ 𝑅 ↔ (abs‘𝑡) ≤ 𝑅))
9 fvoveq1 7158 . . . . . . . . 9 (𝑥 = 𝑡 → (abs‘(𝑥 + 𝑘)) = (abs‘(𝑡 + 𝑘)))
109breq2d 5042 . . . . . . . 8 (𝑥 = 𝑡 → ((1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ (1 / 𝑅) ≤ (abs‘(𝑡 + 𝑘))))
1110ralbidv 3162 . . . . . . 7 (𝑥 = 𝑡 → (∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑡 + 𝑘))))
128, 11anbi12d 633 . . . . . 6 (𝑥 = 𝑡 → (((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘))) ↔ ((abs‘𝑡) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑡 + 𝑘)))))
1312cbvrabv 3439 . . . . 5 {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} = {𝑡 ∈ ℂ ∣ ((abs‘𝑡) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑡 + 𝑘)))}
146, 13eqtri 2821 . . . 4 𝑈 = {𝑡 ∈ ℂ ∣ ((abs‘𝑡) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑡 + 𝑘)))}
15 simplrl 776 . . . 4 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) ∧ (2 · 𝑅) ≤ 𝑛) → 𝑛 ∈ ℕ)
16 simprr 772 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑦𝑈)
1716adantr 484 . . . 4 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) ∧ (2 · 𝑅) ≤ 𝑛) → 𝑦𝑈)
18 simpr 488 . . . 4 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) ∧ (2 · 𝑅) ≤ 𝑛) → (2 · 𝑅) ≤ 𝑛)
195, 14, 15, 17, 18lgamgulmlem3 25616 . . 3 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) ∧ (2 · 𝑅) ≤ 𝑛) → (abs‘((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1)))) ≤ (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))))
203, 6lgamgulmlem1 25614 . . . . . . . . . . 11 (𝜑𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
2120adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
2221, 16sseldd 3916 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑦 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
2322eldifad 3893 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑦 ∈ ℂ)
24 simprl 770 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑛 ∈ ℕ)
2524peano2nnd 11642 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑛 + 1) ∈ ℕ)
2625nnrpd 12417 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑛 + 1) ∈ ℝ+)
2724nnrpd 12417 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑛 ∈ ℝ+)
2826, 27rpdivcld 12436 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝑛 + 1) / 𝑛) ∈ ℝ+)
2928relogcld 25214 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (log‘((𝑛 + 1) / 𝑛)) ∈ ℝ)
3029recnd 10658 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (log‘((𝑛 + 1) / 𝑛)) ∈ ℂ)
3123, 30mulcld 10650 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑦 · (log‘((𝑛 + 1) / 𝑛))) ∈ ℂ)
3224nncnd 11641 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑛 ∈ ℂ)
3324nnne0d 11675 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑛 ≠ 0)
3423, 32, 33divcld 11405 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑦 / 𝑛) ∈ ℂ)
35 1cnd 10625 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 1 ∈ ℂ)
3634, 35addcld 10649 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝑦 / 𝑛) + 1) ∈ ℂ)
3722, 24dmgmdivn0 25613 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝑦 / 𝑛) + 1) ≠ 0)
3836, 37logcld 25162 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (log‘((𝑦 / 𝑛) + 1)) ∈ ℂ)
3931, 38subcld 10986 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1))) ∈ ℂ)
4039abscld 14788 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1)))) ∈ ℝ)
4131abscld 14788 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(𝑦 · (log‘((𝑛 + 1) / 𝑛)))) ∈ ℝ)
4238abscld 14788 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(log‘((𝑦 / 𝑛) + 1))) ∈ ℝ)
4341, 42readdcld 10659 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘(𝑦 · (log‘((𝑛 + 1) / 𝑛)))) + (abs‘(log‘((𝑦 / 𝑛) + 1)))) ∈ ℝ)
444nnred 11640 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑅 ∈ ℝ)
4544, 29remulcld 10660 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑅 · (log‘((𝑛 + 1) / 𝑛))) ∈ ℝ)
464peano2nnd 11642 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑅 + 1) ∈ ℕ)
4746nnrpd 12417 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑅 + 1) ∈ ℝ+)
4847, 27rpmulcld 12435 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝑅 + 1) · 𝑛) ∈ ℝ+)
4948relogcld 25214 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (log‘((𝑅 + 1) · 𝑛)) ∈ ℝ)
50 pire 25051 . . . . . . . 8 π ∈ ℝ
5150a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → π ∈ ℝ)
5249, 51readdcld 10659 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((log‘((𝑅 + 1) · 𝑛)) + π) ∈ ℝ)
5345, 52readdcld 10659 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)) ∈ ℝ)
5431, 38abs2dif2d 14810 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1)))) ≤ ((abs‘(𝑦 · (log‘((𝑛 + 1) / 𝑛)))) + (abs‘(log‘((𝑦 / 𝑛) + 1)))))
5523, 30absmuld 14806 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(𝑦 · (log‘((𝑛 + 1) / 𝑛)))) = ((abs‘𝑦) · (abs‘(log‘((𝑛 + 1) / 𝑛)))))
5628rpred 12419 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝑛 + 1) / 𝑛) ∈ ℝ)
5732mulid2d 10648 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (1 · 𝑛) = 𝑛)
5824nnred 11640 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑛 ∈ ℝ)
5958lep1d 11560 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑛 ≤ (𝑛 + 1))
6057, 59eqbrtrd 5052 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (1 · 𝑛) ≤ (𝑛 + 1))
61 1red 10631 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 1 ∈ ℝ)
6258, 61readdcld 10659 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑛 + 1) ∈ ℝ)
6361, 62, 27lemuldivd 12468 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((1 · 𝑛) ≤ (𝑛 + 1) ↔ 1 ≤ ((𝑛 + 1) / 𝑛)))
6460, 63mpbid 235 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 1 ≤ ((𝑛 + 1) / 𝑛))
6556, 64logge0d 25221 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 0 ≤ (log‘((𝑛 + 1) / 𝑛)))
6629, 65absidd 14774 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(log‘((𝑛 + 1) / 𝑛))) = (log‘((𝑛 + 1) / 𝑛)))
6766oveq2d 7151 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘𝑦) · (abs‘(log‘((𝑛 + 1) / 𝑛)))) = ((abs‘𝑦) · (log‘((𝑛 + 1) / 𝑛))))
6855, 67eqtrd 2833 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(𝑦 · (log‘((𝑛 + 1) / 𝑛)))) = ((abs‘𝑦) · (log‘((𝑛 + 1) / 𝑛))))
6923abscld 14788 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘𝑦) ∈ ℝ)
70 fveq2 6645 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (abs‘𝑥) = (abs‘𝑦))
7170breq1d 5040 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((abs‘𝑥) ≤ 𝑅 ↔ (abs‘𝑦) ≤ 𝑅))
72 fvoveq1 7158 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (abs‘(𝑥 + 𝑘)) = (abs‘(𝑦 + 𝑘)))
7372breq2d 5042 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ (1 / 𝑅) ≤ (abs‘(𝑦 + 𝑘))))
7473ralbidv 3162 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑦 + 𝑘))))
7571, 74anbi12d 633 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘))) ↔ ((abs‘𝑦) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑦 + 𝑘)))))
7675, 6elrab2 3631 . . . . . . . . . . 11 (𝑦𝑈 ↔ (𝑦 ∈ ℂ ∧ ((abs‘𝑦) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑦 + 𝑘)))))
7776simprbi 500 . . . . . . . . . 10 (𝑦𝑈 → ((abs‘𝑦) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑦 + 𝑘))))
7877ad2antll 728 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘𝑦) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑦 + 𝑘))))
7978simpld 498 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘𝑦) ≤ 𝑅)
8069, 44, 29, 65, 79lemul1ad 11568 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘𝑦) · (log‘((𝑛 + 1) / 𝑛))) ≤ (𝑅 · (log‘((𝑛 + 1) / 𝑛))))
8168, 80eqbrtrd 5052 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(𝑦 · (log‘((𝑛 + 1) / 𝑛)))) ≤ (𝑅 · (log‘((𝑛 + 1) / 𝑛))))
8236, 37absrpcld 14800 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝑦 / 𝑛) + 1)) ∈ ℝ+)
8382relogcld 25214 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (log‘(abs‘((𝑦 / 𝑛) + 1))) ∈ ℝ)
8483recnd 10658 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (log‘(abs‘((𝑦 / 𝑛) + 1))) ∈ ℂ)
8584abscld 14788 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(log‘(abs‘((𝑦 / 𝑛) + 1)))) ∈ ℝ)
8685, 51readdcld 10659 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘(log‘(abs‘((𝑦 / 𝑛) + 1)))) + π) ∈ ℝ)
87 abslogle 25209 . . . . . . . 8 ((((𝑦 / 𝑛) + 1) ∈ ℂ ∧ ((𝑦 / 𝑛) + 1) ≠ 0) → (abs‘(log‘((𝑦 / 𝑛) + 1))) ≤ ((abs‘(log‘(abs‘((𝑦 / 𝑛) + 1)))) + π))
8836, 37, 87syl2anc 587 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(log‘((𝑦 / 𝑛) + 1))) ≤ ((abs‘(log‘(abs‘((𝑦 / 𝑛) + 1)))) + π))
89 1rp 12381 . . . . . . . . . . . 12 1 ∈ ℝ+
90 relogdiv 25184 . . . . . . . . . . . 12 ((1 ∈ ℝ+ ∧ ((𝑅 + 1) · 𝑛) ∈ ℝ+) → (log‘(1 / ((𝑅 + 1) · 𝑛))) = ((log‘1) − (log‘((𝑅 + 1) · 𝑛))))
9189, 48, 90sylancr 590 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (log‘(1 / ((𝑅 + 1) · 𝑛))) = ((log‘1) − (log‘((𝑅 + 1) · 𝑛))))
92 log1 25177 . . . . . . . . . . . . 13 (log‘1) = 0
9392oveq1i 7145 . . . . . . . . . . . 12 ((log‘1) − (log‘((𝑅 + 1) · 𝑛))) = (0 − (log‘((𝑅 + 1) · 𝑛)))
94 df-neg 10862 . . . . . . . . . . . 12 -(log‘((𝑅 + 1) · 𝑛)) = (0 − (log‘((𝑅 + 1) · 𝑛)))
9593, 94eqtr4i 2824 . . . . . . . . . . 11 ((log‘1) − (log‘((𝑅 + 1) · 𝑛))) = -(log‘((𝑅 + 1) · 𝑛))
9691, 95eqtr2di 2850 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → -(log‘((𝑅 + 1) · 𝑛)) = (log‘(1 / ((𝑅 + 1) · 𝑛))))
9746nnrecred 11676 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (1 / (𝑅 + 1)) ∈ ℝ)
9823, 32addcld 10649 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑦 + 𝑛) ∈ ℂ)
9998abscld 14788 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(𝑦 + 𝑛)) ∈ ℝ)
1004nnrecred 11676 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (1 / 𝑅) ∈ ℝ)
1014nnrpd 12417 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑅 ∈ ℝ+)
102 0le1 11152 . . . . . . . . . . . . . . . 16 0 ≤ 1
103102a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 0 ≤ 1)
10444lep1d 11560 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑅 ≤ (𝑅 + 1))
105101, 47, 61, 103, 104lediv2ad 12441 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (1 / (𝑅 + 1)) ≤ (1 / 𝑅))
106 oveq2 7143 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → (𝑦 + 𝑘) = (𝑦 + 𝑛))
107106fveq2d 6649 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → (abs‘(𝑦 + 𝑘)) = (abs‘(𝑦 + 𝑛)))
108107breq2d 5042 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → ((1 / 𝑅) ≤ (abs‘(𝑦 + 𝑘)) ↔ (1 / 𝑅) ≤ (abs‘(𝑦 + 𝑛))))
10978simprd 499 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑦 + 𝑘)))
11024nnnn0d 11943 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑛 ∈ ℕ0)
111108, 109, 110rspcdva 3573 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (1 / 𝑅) ≤ (abs‘(𝑦 + 𝑛)))
11297, 100, 99, 105, 111letrd 10786 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (1 / (𝑅 + 1)) ≤ (abs‘(𝑦 + 𝑛)))
11397, 99, 27, 112lediv1dd 12477 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((1 / (𝑅 + 1)) / 𝑛) ≤ ((abs‘(𝑦 + 𝑛)) / 𝑛))
11446nncnd 11641 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑅 + 1) ∈ ℂ)
11546nnne0d 11675 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑅 + 1) ≠ 0)
116114, 32, 115, 33recdiv2d 11423 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((1 / (𝑅 + 1)) / 𝑛) = (1 / ((𝑅 + 1) · 𝑛)))
11723, 32, 32, 33divdird 11443 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝑦 + 𝑛) / 𝑛) = ((𝑦 / 𝑛) + (𝑛 / 𝑛)))
11832, 33dividd 11403 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑛 / 𝑛) = 1)
119118oveq2d 7151 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝑦 / 𝑛) + (𝑛 / 𝑛)) = ((𝑦 / 𝑛) + 1))
120117, 119eqtr2d 2834 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝑦 / 𝑛) + 1) = ((𝑦 + 𝑛) / 𝑛))
121120fveq2d 6649 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝑦 / 𝑛) + 1)) = (abs‘((𝑦 + 𝑛) / 𝑛)))
12298, 32, 33absdivd 14807 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝑦 + 𝑛) / 𝑛)) = ((abs‘(𝑦 + 𝑛)) / (abs‘𝑛)))
12327rpge0d 12423 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 0 ≤ 𝑛)
12458, 123absidd 14774 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘𝑛) = 𝑛)
125124oveq2d 7151 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘(𝑦 + 𝑛)) / (abs‘𝑛)) = ((abs‘(𝑦 + 𝑛)) / 𝑛))
126121, 122, 1253eqtrrd 2838 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘(𝑦 + 𝑛)) / 𝑛) = (abs‘((𝑦 / 𝑛) + 1)))
127113, 116, 1263brtr3d 5061 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (1 / ((𝑅 + 1) · 𝑛)) ≤ (abs‘((𝑦 / 𝑛) + 1)))
12848rpreccld 12429 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (1 / ((𝑅 + 1) · 𝑛)) ∈ ℝ+)
129128, 82logled 25218 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((1 / ((𝑅 + 1) · 𝑛)) ≤ (abs‘((𝑦 / 𝑛) + 1)) ↔ (log‘(1 / ((𝑅 + 1) · 𝑛))) ≤ (log‘(abs‘((𝑦 / 𝑛) + 1)))))
130127, 129mpbid 235 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (log‘(1 / ((𝑅 + 1) · 𝑛))) ≤ (log‘(abs‘((𝑦 / 𝑛) + 1))))
13196, 130eqbrtrd 5052 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → -(log‘((𝑅 + 1) · 𝑛)) ≤ (log‘(abs‘((𝑦 / 𝑛) + 1))))
13236abscld 14788 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝑦 / 𝑛) + 1)) ∈ ℝ)
13344, 61readdcld 10659 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑅 + 1) ∈ ℝ)
13448rpred 12419 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝑅 + 1) · 𝑛) ∈ ℝ)
13534abscld 14788 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(𝑦 / 𝑛)) ∈ ℝ)
136135, 61readdcld 10659 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘(𝑦 / 𝑛)) + 1) ∈ ℝ)
13734, 35abstrid 14808 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝑦 / 𝑛) + 1)) ≤ ((abs‘(𝑦 / 𝑛)) + (abs‘1)))
138 abs1 14649 . . . . . . . . . . . . . 14 (abs‘1) = 1
139138oveq2i 7146 . . . . . . . . . . . . 13 ((abs‘(𝑦 / 𝑛)) + (abs‘1)) = ((abs‘(𝑦 / 𝑛)) + 1)
140137, 139breqtrdi 5071 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝑦 / 𝑛) + 1)) ≤ ((abs‘(𝑦 / 𝑛)) + 1))
14189a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 1 ∈ ℝ+)
14223absge0d 14796 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 0 ≤ (abs‘𝑦))
14324nnge1d 11673 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 1 ≤ 𝑛)
14469, 44, 141, 58, 142, 79, 143lediv12ad 12478 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘𝑦) / 𝑛) ≤ (𝑅 / 1))
14523, 32, 33absdivd 14807 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(𝑦 / 𝑛)) = ((abs‘𝑦) / (abs‘𝑛)))
146124oveq2d 7151 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘𝑦) / (abs‘𝑛)) = ((abs‘𝑦) / 𝑛))
147145, 146eqtr2d 2834 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘𝑦) / 𝑛) = (abs‘(𝑦 / 𝑛)))
1484nncnd 11641 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 𝑅 ∈ ℂ)
149148div1d 11397 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑅 / 1) = 𝑅)
150144, 147, 1493brtr3d 5061 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(𝑦 / 𝑛)) ≤ 𝑅)
151135, 44, 61, 150leadd1dd 11243 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘(𝑦 / 𝑛)) + 1) ≤ (𝑅 + 1))
152132, 136, 133, 140, 151letrd 10786 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝑦 / 𝑛) + 1)) ≤ (𝑅 + 1))
15347rpge0d 12423 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → 0 ≤ (𝑅 + 1))
154133, 58, 153, 143lemulge11d 11566 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑅 + 1) ≤ ((𝑅 + 1) · 𝑛))
155132, 133, 134, 152, 154letrd 10786 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝑦 / 𝑛) + 1)) ≤ ((𝑅 + 1) · 𝑛))
15682, 48logled 25218 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘((𝑦 / 𝑛) + 1)) ≤ ((𝑅 + 1) · 𝑛) ↔ (log‘(abs‘((𝑦 / 𝑛) + 1))) ≤ (log‘((𝑅 + 1) · 𝑛))))
157155, 156mpbid 235 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (log‘(abs‘((𝑦 / 𝑛) + 1))) ≤ (log‘((𝑅 + 1) · 𝑛)))
15883, 49absled 14782 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘(log‘(abs‘((𝑦 / 𝑛) + 1)))) ≤ (log‘((𝑅 + 1) · 𝑛)) ↔ (-(log‘((𝑅 + 1) · 𝑛)) ≤ (log‘(abs‘((𝑦 / 𝑛) + 1))) ∧ (log‘(abs‘((𝑦 / 𝑛) + 1))) ≤ (log‘((𝑅 + 1) · 𝑛)))))
159131, 157, 158mpbir2and 712 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(log‘(abs‘((𝑦 / 𝑛) + 1)))) ≤ (log‘((𝑅 + 1) · 𝑛)))
16085, 49, 51, 159leadd1dd 11243 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘(log‘(abs‘((𝑦 / 𝑛) + 1)))) + π) ≤ ((log‘((𝑅 + 1) · 𝑛)) + π))
16142, 86, 52, 88, 160letrd 10786 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘(log‘((𝑦 / 𝑛) + 1))) ≤ ((log‘((𝑅 + 1) · 𝑛)) + π))
16241, 42, 45, 52, 81, 161le2addd 11248 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((abs‘(𝑦 · (log‘((𝑛 + 1) / 𝑛)))) + (abs‘(log‘((𝑦 / 𝑛) + 1)))) ≤ ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)))
16340, 43, 53, 54, 162letrd 10786 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1)))) ≤ ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)))
164163adantr 484 . . 3 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) ∧ ¬ (2 · 𝑅) ≤ 𝑛) → (abs‘((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1)))) ≤ ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)))
1651, 2, 19, 164ifbothda 4462 . 2 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1)))) ≤ if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))))
166 oveq1 7142 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝑚 + 1) = (𝑛 + 1))
167 id 22 . . . . . . . . . . . 12 (𝑚 = 𝑛𝑚 = 𝑛)
168166, 167oveq12d 7153 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((𝑚 + 1) / 𝑚) = ((𝑛 + 1) / 𝑛))
169168fveq2d 6649 . . . . . . . . . 10 (𝑚 = 𝑛 → (log‘((𝑚 + 1) / 𝑚)) = (log‘((𝑛 + 1) / 𝑛)))
170169oveq2d 7151 . . . . . . . . 9 (𝑚 = 𝑛 → (𝑧 · (log‘((𝑚 + 1) / 𝑚))) = (𝑧 · (log‘((𝑛 + 1) / 𝑛))))
171 oveq2 7143 . . . . . . . . . 10 (𝑚 = 𝑛 → (𝑧 / 𝑚) = (𝑧 / 𝑛))
172171fvoveq1d 7157 . . . . . . . . 9 (𝑚 = 𝑛 → (log‘((𝑧 / 𝑚) + 1)) = (log‘((𝑧 / 𝑛) + 1)))
173170, 172oveq12d 7153 . . . . . . . 8 (𝑚 = 𝑛 → ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) = ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))))
174173mpteq2dv 5126 . . . . . . 7 (𝑚 = 𝑛 → (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))) = (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1)))))
175 lgamgulm.g . . . . . . 7 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))
176 cnex 10607 . . . . . . . . 9 ℂ ∈ V
1776, 176rabex2 5201 . . . . . . . 8 𝑈 ∈ V
178177mptex 6963 . . . . . . 7 (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1)))) ∈ V
179174, 175, 178fvmpt 6745 . . . . . 6 (𝑛 ∈ ℕ → (𝐺𝑛) = (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1)))))
180179ad2antrl 727 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝐺𝑛) = (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1)))))
181180fveq1d 6647 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝐺𝑛)‘𝑦) = ((𝑧𝑈 ↦ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))))‘𝑦))
182 oveq1 7142 . . . . . . 7 (𝑧 = 𝑦 → (𝑧 · (log‘((𝑛 + 1) / 𝑛))) = (𝑦 · (log‘((𝑛 + 1) / 𝑛))))
183 oveq1 7142 . . . . . . . 8 (𝑧 = 𝑦 → (𝑧 / 𝑛) = (𝑦 / 𝑛))
184183fvoveq1d 7157 . . . . . . 7 (𝑧 = 𝑦 → (log‘((𝑧 / 𝑛) + 1)) = (log‘((𝑦 / 𝑛) + 1)))
185182, 184oveq12d 7153 . . . . . 6 (𝑧 = 𝑦 → ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) = ((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1))))
186 eqid 2798 . . . . . 6 (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1)))) = (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))))
187 ovex 7168 . . . . . 6 ((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1))) ∈ V
188185, 186, 187fvmpt 6745 . . . . 5 (𝑦𝑈 → ((𝑧𝑈 ↦ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))))‘𝑦) = ((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1))))
189188ad2antll 728 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝑧𝑈 ↦ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))))‘𝑦) = ((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1))))
190181, 189eqtrd 2833 . . 3 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → ((𝐺𝑛)‘𝑦) = ((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1))))
191190fveq2d 6649 . 2 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝐺𝑛)‘𝑦)) = (abs‘((𝑦 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑦 / 𝑛) + 1)))))
192 breq2 5034 . . . . 5 (𝑚 = 𝑛 → ((2 · 𝑅) ≤ 𝑚 ↔ (2 · 𝑅) ≤ 𝑛))
193 oveq1 7142 . . . . . . 7 (𝑚 = 𝑛 → (𝑚↑2) = (𝑛↑2))
194193oveq2d 7151 . . . . . 6 (𝑚 = 𝑛 → ((2 · (𝑅 + 1)) / (𝑚↑2)) = ((2 · (𝑅 + 1)) / (𝑛↑2)))
195194oveq2d 7151 . . . . 5 (𝑚 = 𝑛 → (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))) = (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))))
196169oveq2d 7151 . . . . . 6 (𝑚 = 𝑛 → (𝑅 · (log‘((𝑚 + 1) / 𝑚))) = (𝑅 · (log‘((𝑛 + 1) / 𝑛))))
197 oveq2 7143 . . . . . . . 8 (𝑚 = 𝑛 → ((𝑅 + 1) · 𝑚) = ((𝑅 + 1) · 𝑛))
198197fveq2d 6649 . . . . . . 7 (𝑚 = 𝑛 → (log‘((𝑅 + 1) · 𝑚)) = (log‘((𝑅 + 1) · 𝑛)))
199198oveq1d 7150 . . . . . 6 (𝑚 = 𝑛 → ((log‘((𝑅 + 1) · 𝑚)) + π) = ((log‘((𝑅 + 1) · 𝑛)) + π))
200196, 199oveq12d 7153 . . . . 5 (𝑚 = 𝑛 → ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π)) = ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)))
201192, 195, 200ifbieq12d 4452 . . . 4 (𝑚 = 𝑛 → if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π))) = if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))))
202 lgamgulm.t . . . 4 𝑇 = (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π))))
203 ovex 7168 . . . . 5 (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))) ∈ V
204 ovex 7168 . . . . 5 ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π)) ∈ V
205203, 204ifex 4473 . . . 4 if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))) ∈ V
206201, 202, 205fvmpt 6745 . . 3 (𝑛 ∈ ℕ → (𝑇𝑛) = if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))))
207206ad2antrl 727 . 2 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (𝑇𝑛) = if((2 · 𝑅) ≤ 𝑛, (𝑅 · ((2 · (𝑅 + 1)) / (𝑛↑2))), ((𝑅 · (log‘((𝑛 + 1) / 𝑛))) + ((log‘((𝑅 + 1) · 𝑛)) + π))))
208165, 191, 2073brtr4d 5062 1 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝐺𝑛)‘𝑦)) ≤ (𝑇𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106  {crab 3110  cdif 3878  wss 3881  ifcif 4425   class class class wbr 5030  cmpt 5110  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  cle 10665  cmin 10859  -cneg 10860   / cdiv 11286  cn 11625  2c2 11680  0cn0 11885  cz 11969  +crp 12377  cexp 13425  abscabs 14585  πcpi 15412  logclog 25146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-tan 15417  df-pi 15418  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-cmp 21992  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-limc 24469  df-dv 24470  df-log 25148
This theorem is referenced by:  lgamgulmlem6  25619
  Copyright terms: Public domain W3C validator