MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplmon2 Structured version   Visualization version   GIF version

Theorem mplmon2 22024
Description: Express a scaled monomial. (Contributed by Stefan O'Rear, 8-Mar-2015.)
Hypotheses
Ref Expression
mplmon2.p 𝑃 = (𝐼 mPoly 𝑅)
mplmon2.v · = ( ·𝑠𝑃)
mplmon2.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mplmon2.o 1 = (1r𝑅)
mplmon2.z 0 = (0g𝑅)
mplmon2.b 𝐵 = (Base‘𝑅)
mplmon2.i (𝜑𝐼𝑊)
mplmon2.r (𝜑𝑅 ∈ Ring)
mplmon2.k (𝜑𝐾𝐷)
mplmon2.x (𝜑𝑋𝐵)
Assertion
Ref Expression
mplmon2 (𝜑 → (𝑋 · (𝑦𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 ))) = (𝑦𝐷 ↦ if(𝑦 = 𝐾, 𝑋, 0 )))
Distinct variable groups:   𝜑,𝑦   𝑦,𝐵   𝑦,𝐷   𝑓,𝐼   𝑓,𝐾,𝑦   𝑦, 1   𝑦,𝑅   𝑦,𝑋   𝑦, 0
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑃(𝑦,𝑓)   𝑅(𝑓)   · (𝑦,𝑓)   1 (𝑓)   𝐼(𝑦)   𝑊(𝑦,𝑓)   𝑋(𝑓)   0 (𝑓)

Proof of Theorem mplmon2
StepHypRef Expression
1 mplmon2.p . . 3 𝑃 = (𝐼 mPoly 𝑅)
2 mplmon2.v . . 3 · = ( ·𝑠𝑃)
3 mplmon2.b . . 3 𝐵 = (Base‘𝑅)
4 eqid 2736 . . 3 (Base‘𝑃) = (Base‘𝑃)
5 eqid 2736 . . 3 (.r𝑅) = (.r𝑅)
6 mplmon2.d . . 3 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
7 mplmon2.x . . 3 (𝜑𝑋𝐵)
8 mplmon2.z . . . 4 0 = (0g𝑅)
9 mplmon2.o . . . 4 1 = (1r𝑅)
10 mplmon2.i . . . 4 (𝜑𝐼𝑊)
11 mplmon2.r . . . 4 (𝜑𝑅 ∈ Ring)
12 mplmon2.k . . . 4 (𝜑𝐾𝐷)
131, 4, 8, 9, 6, 10, 11, 12mplmon 21998 . . 3 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 )) ∈ (Base‘𝑃))
141, 2, 3, 4, 5, 6, 7, 13mplvsca 21980 . 2 (𝜑 → (𝑋 · (𝑦𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 ))) = ((𝐷 × {𝑋}) ∘f (.r𝑅)(𝑦𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 ))))
15 ovex 7443 . . . . 5 (ℕ0m 𝐼) ∈ V
166, 15rabex2 5316 . . . 4 𝐷 ∈ V
1716a1i 11 . . 3 (𝜑𝐷 ∈ V)
187adantr 480 . . 3 ((𝜑𝑦𝐷) → 𝑋𝐵)
199fvexi 6895 . . . . 5 1 ∈ V
208fvexi 6895 . . . . 5 0 ∈ V
2119, 20ifex 4556 . . . 4 if(𝑦 = 𝐾, 1 , 0 ) ∈ V
2221a1i 11 . . 3 ((𝜑𝑦𝐷) → if(𝑦 = 𝐾, 1 , 0 ) ∈ V)
23 fconstmpt 5721 . . . 4 (𝐷 × {𝑋}) = (𝑦𝐷𝑋)
2423a1i 11 . . 3 (𝜑 → (𝐷 × {𝑋}) = (𝑦𝐷𝑋))
25 eqidd 2737 . . 3 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 )))
2617, 18, 22, 24, 25offval2 7696 . 2 (𝜑 → ((𝐷 × {𝑋}) ∘f (.r𝑅)(𝑦𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 ))) = (𝑦𝐷 ↦ (𝑋(.r𝑅)if(𝑦 = 𝐾, 1 , 0 ))))
27 oveq2 7418 . . . . 5 ( 1 = if(𝑦 = 𝐾, 1 , 0 ) → (𝑋(.r𝑅) 1 ) = (𝑋(.r𝑅)if(𝑦 = 𝐾, 1 , 0 )))
2827eqeq1d 2738 . . . 4 ( 1 = if(𝑦 = 𝐾, 1 , 0 ) → ((𝑋(.r𝑅) 1 ) = if(𝑦 = 𝐾, 𝑋, 0 ) ↔ (𝑋(.r𝑅)if(𝑦 = 𝐾, 1 , 0 )) = if(𝑦 = 𝐾, 𝑋, 0 )))
29 oveq2 7418 . . . . 5 ( 0 = if(𝑦 = 𝐾, 1 , 0 ) → (𝑋(.r𝑅) 0 ) = (𝑋(.r𝑅)if(𝑦 = 𝐾, 1 , 0 )))
3029eqeq1d 2738 . . . 4 ( 0 = if(𝑦 = 𝐾, 1 , 0 ) → ((𝑋(.r𝑅) 0 ) = if(𝑦 = 𝐾, 𝑋, 0 ) ↔ (𝑋(.r𝑅)if(𝑦 = 𝐾, 1 , 0 )) = if(𝑦 = 𝐾, 𝑋, 0 )))
313, 5, 9ringridm 20235 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋(.r𝑅) 1 ) = 𝑋)
3211, 7, 31syl2anc 584 . . . . 5 (𝜑 → (𝑋(.r𝑅) 1 ) = 𝑋)
33 iftrue 4511 . . . . . 6 (𝑦 = 𝐾 → if(𝑦 = 𝐾, 𝑋, 0 ) = 𝑋)
3433eqcomd 2742 . . . . 5 (𝑦 = 𝐾𝑋 = if(𝑦 = 𝐾, 𝑋, 0 ))
3532, 34sylan9eq 2791 . . . 4 ((𝜑𝑦 = 𝐾) → (𝑋(.r𝑅) 1 ) = if(𝑦 = 𝐾, 𝑋, 0 ))
363, 5, 8ringrz 20259 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋(.r𝑅) 0 ) = 0 )
3711, 7, 36syl2anc 584 . . . . 5 (𝜑 → (𝑋(.r𝑅) 0 ) = 0 )
38 iffalse 4514 . . . . . 6 𝑦 = 𝐾 → if(𝑦 = 𝐾, 𝑋, 0 ) = 0 )
3938eqcomd 2742 . . . . 5 𝑦 = 𝐾0 = if(𝑦 = 𝐾, 𝑋, 0 ))
4037, 39sylan9eq 2791 . . . 4 ((𝜑 ∧ ¬ 𝑦 = 𝐾) → (𝑋(.r𝑅) 0 ) = if(𝑦 = 𝐾, 𝑋, 0 ))
4128, 30, 35, 40ifbothda 4544 . . 3 (𝜑 → (𝑋(.r𝑅)if(𝑦 = 𝐾, 1 , 0 )) = if(𝑦 = 𝐾, 𝑋, 0 ))
4241mpteq2dv 5220 . 2 (𝜑 → (𝑦𝐷 ↦ (𝑋(.r𝑅)if(𝑦 = 𝐾, 1 , 0 ))) = (𝑦𝐷 ↦ if(𝑦 = 𝐾, 𝑋, 0 )))
4314, 26, 423eqtrd 2775 1 (𝜑 → (𝑋 · (𝑦𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 ))) = (𝑦𝐷 ↦ if(𝑦 = 𝐾, 𝑋, 0 )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3420  Vcvv 3464  ifcif 4505  {csn 4606  cmpt 5206   × cxp 5657  ccnv 5658  cima 5662  cfv 6536  (class class class)co 7410  f cof 7674  m cmap 8845  Fincfn 8964  cn 12245  0cn0 12506  Basecbs 17233  .rcmulr 17277   ·𝑠 cvsca 17280  0gc0g 17458  1rcur 20146  Ringcrg 20198   mPoly cmpl 21871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-tset 17295  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-psr 21874  df-mpl 21876
This theorem is referenced by:  mplascl  22027  mplmon2cl  22031  mplmon2mul  22032  mplcoe4  22034  coe1tm  22215
  Copyright terms: Public domain W3C validator