| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mplmon2 | Structured version Visualization version GIF version | ||
| Description: Express a scaled monomial. (Contributed by Stefan O'Rear, 8-Mar-2015.) |
| Ref | Expression |
|---|---|
| mplmon2.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mplmon2.v | ⊢ · = ( ·𝑠 ‘𝑃) |
| mplmon2.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| mplmon2.o | ⊢ 1 = (1r‘𝑅) |
| mplmon2.z | ⊢ 0 = (0g‘𝑅) |
| mplmon2.b | ⊢ 𝐵 = (Base‘𝑅) |
| mplmon2.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| mplmon2.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| mplmon2.k | ⊢ (𝜑 → 𝐾 ∈ 𝐷) |
| mplmon2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| mplmon2 | ⊢ (𝜑 → (𝑋 · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 𝑋, 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplmon2.p | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 2 | mplmon2.v | . . 3 ⊢ · = ( ·𝑠 ‘𝑃) | |
| 3 | mplmon2.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 4 | eqid 2736 | . . 3 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 5 | eqid 2736 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 6 | mplmon2.d | . . 3 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 7 | mplmon2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 8 | mplmon2.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 9 | mplmon2.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
| 10 | mplmon2.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 11 | mplmon2.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 12 | mplmon2.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝐷) | |
| 13 | 1, 4, 8, 9, 6, 10, 11, 12 | mplmon 21998 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 )) ∈ (Base‘𝑃)) |
| 14 | 1, 2, 3, 4, 5, 6, 7, 13 | mplvsca 21980 | . 2 ⊢ (𝜑 → (𝑋 · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 ))) = ((𝐷 × {𝑋}) ∘f (.r‘𝑅)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 )))) |
| 15 | ovex 7443 | . . . . 5 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
| 16 | 6, 15 | rabex2 5316 | . . . 4 ⊢ 𝐷 ∈ V |
| 17 | 16 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐷 ∈ V) |
| 18 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑋 ∈ 𝐵) |
| 19 | 9 | fvexi 6895 | . . . . 5 ⊢ 1 ∈ V |
| 20 | 8 | fvexi 6895 | . . . . 5 ⊢ 0 ∈ V |
| 21 | 19, 20 | ifex 4556 | . . . 4 ⊢ if(𝑦 = 𝐾, 1 , 0 ) ∈ V |
| 22 | 21 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → if(𝑦 = 𝐾, 1 , 0 ) ∈ V) |
| 23 | fconstmpt 5721 | . . . 4 ⊢ (𝐷 × {𝑋}) = (𝑦 ∈ 𝐷 ↦ 𝑋) | |
| 24 | 23 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐷 × {𝑋}) = (𝑦 ∈ 𝐷 ↦ 𝑋)) |
| 25 | eqidd 2737 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 )) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 ))) | |
| 26 | 17, 18, 22, 24, 25 | offval2 7696 | . 2 ⊢ (𝜑 → ((𝐷 × {𝑋}) ∘f (.r‘𝑅)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 ))) = (𝑦 ∈ 𝐷 ↦ (𝑋(.r‘𝑅)if(𝑦 = 𝐾, 1 , 0 )))) |
| 27 | oveq2 7418 | . . . . 5 ⊢ ( 1 = if(𝑦 = 𝐾, 1 , 0 ) → (𝑋(.r‘𝑅) 1 ) = (𝑋(.r‘𝑅)if(𝑦 = 𝐾, 1 , 0 ))) | |
| 28 | 27 | eqeq1d 2738 | . . . 4 ⊢ ( 1 = if(𝑦 = 𝐾, 1 , 0 ) → ((𝑋(.r‘𝑅) 1 ) = if(𝑦 = 𝐾, 𝑋, 0 ) ↔ (𝑋(.r‘𝑅)if(𝑦 = 𝐾, 1 , 0 )) = if(𝑦 = 𝐾, 𝑋, 0 ))) |
| 29 | oveq2 7418 | . . . . 5 ⊢ ( 0 = if(𝑦 = 𝐾, 1 , 0 ) → (𝑋(.r‘𝑅) 0 ) = (𝑋(.r‘𝑅)if(𝑦 = 𝐾, 1 , 0 ))) | |
| 30 | 29 | eqeq1d 2738 | . . . 4 ⊢ ( 0 = if(𝑦 = 𝐾, 1 , 0 ) → ((𝑋(.r‘𝑅) 0 ) = if(𝑦 = 𝐾, 𝑋, 0 ) ↔ (𝑋(.r‘𝑅)if(𝑦 = 𝐾, 1 , 0 )) = if(𝑦 = 𝐾, 𝑋, 0 ))) |
| 31 | 3, 5, 9 | ringridm 20235 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋(.r‘𝑅) 1 ) = 𝑋) |
| 32 | 11, 7, 31 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑋(.r‘𝑅) 1 ) = 𝑋) |
| 33 | iftrue 4511 | . . . . . 6 ⊢ (𝑦 = 𝐾 → if(𝑦 = 𝐾, 𝑋, 0 ) = 𝑋) | |
| 34 | 33 | eqcomd 2742 | . . . . 5 ⊢ (𝑦 = 𝐾 → 𝑋 = if(𝑦 = 𝐾, 𝑋, 0 )) |
| 35 | 32, 34 | sylan9eq 2791 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 = 𝐾) → (𝑋(.r‘𝑅) 1 ) = if(𝑦 = 𝐾, 𝑋, 0 )) |
| 36 | 3, 5, 8 | ringrz 20259 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋(.r‘𝑅) 0 ) = 0 ) |
| 37 | 11, 7, 36 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑋(.r‘𝑅) 0 ) = 0 ) |
| 38 | iffalse 4514 | . . . . . 6 ⊢ (¬ 𝑦 = 𝐾 → if(𝑦 = 𝐾, 𝑋, 0 ) = 0 ) | |
| 39 | 38 | eqcomd 2742 | . . . . 5 ⊢ (¬ 𝑦 = 𝐾 → 0 = if(𝑦 = 𝐾, 𝑋, 0 )) |
| 40 | 37, 39 | sylan9eq 2791 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑦 = 𝐾) → (𝑋(.r‘𝑅) 0 ) = if(𝑦 = 𝐾, 𝑋, 0 )) |
| 41 | 28, 30, 35, 40 | ifbothda 4544 | . . 3 ⊢ (𝜑 → (𝑋(.r‘𝑅)if(𝑦 = 𝐾, 1 , 0 )) = if(𝑦 = 𝐾, 𝑋, 0 )) |
| 42 | 41 | mpteq2dv 5220 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ (𝑋(.r‘𝑅)if(𝑦 = 𝐾, 1 , 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 𝑋, 0 ))) |
| 43 | 14, 26, 42 | 3eqtrd 2775 | 1 ⊢ (𝜑 → (𝑋 · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 𝑋, 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3420 Vcvv 3464 ifcif 4505 {csn 4606 ↦ cmpt 5206 × cxp 5657 ◡ccnv 5658 “ cima 5662 ‘cfv 6536 (class class class)co 7410 ∘f cof 7674 ↑m cmap 8845 Fincfn 8964 ℕcn 12245 ℕ0cn0 12506 Basecbs 17233 .rcmulr 17277 ·𝑠 cvsca 17280 0gc0g 17458 1rcur 20146 Ringcrg 20198 mPoly cmpl 21871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-sca 17292 df-vsca 17293 df-tset 17295 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-minusg 18925 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-psr 21874 df-mpl 21876 |
| This theorem is referenced by: mplascl 22027 mplmon2cl 22031 mplmon2mul 22032 mplcoe4 22034 coe1tm 22215 |
| Copyright terms: Public domain | W3C validator |