| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mplmon2 | Structured version Visualization version GIF version | ||
| Description: Express a scaled monomial. (Contributed by Stefan O'Rear, 8-Mar-2015.) |
| Ref | Expression |
|---|---|
| mplmon2.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mplmon2.v | ⊢ · = ( ·𝑠 ‘𝑃) |
| mplmon2.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| mplmon2.o | ⊢ 1 = (1r‘𝑅) |
| mplmon2.z | ⊢ 0 = (0g‘𝑅) |
| mplmon2.b | ⊢ 𝐵 = (Base‘𝑅) |
| mplmon2.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| mplmon2.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| mplmon2.k | ⊢ (𝜑 → 𝐾 ∈ 𝐷) |
| mplmon2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| mplmon2 | ⊢ (𝜑 → (𝑋 · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 𝑋, 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplmon2.p | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 2 | mplmon2.v | . . 3 ⊢ · = ( ·𝑠 ‘𝑃) | |
| 3 | mplmon2.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 4 | eqid 2729 | . . 3 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 5 | eqid 2729 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 6 | mplmon2.d | . . 3 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 7 | mplmon2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 8 | mplmon2.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 9 | mplmon2.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
| 10 | mplmon2.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 11 | mplmon2.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 12 | mplmon2.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝐷) | |
| 13 | 1, 4, 8, 9, 6, 10, 11, 12 | mplmon 21958 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 )) ∈ (Base‘𝑃)) |
| 14 | 1, 2, 3, 4, 5, 6, 7, 13 | mplvsca 21940 | . 2 ⊢ (𝜑 → (𝑋 · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 ))) = ((𝐷 × {𝑋}) ∘f (.r‘𝑅)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 )))) |
| 15 | ovex 7386 | . . . . 5 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
| 16 | 6, 15 | rabex2 5283 | . . . 4 ⊢ 𝐷 ∈ V |
| 17 | 16 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐷 ∈ V) |
| 18 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑋 ∈ 𝐵) |
| 19 | 9 | fvexi 6840 | . . . . 5 ⊢ 1 ∈ V |
| 20 | 8 | fvexi 6840 | . . . . 5 ⊢ 0 ∈ V |
| 21 | 19, 20 | ifex 4529 | . . . 4 ⊢ if(𝑦 = 𝐾, 1 , 0 ) ∈ V |
| 22 | 21 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → if(𝑦 = 𝐾, 1 , 0 ) ∈ V) |
| 23 | fconstmpt 5685 | . . . 4 ⊢ (𝐷 × {𝑋}) = (𝑦 ∈ 𝐷 ↦ 𝑋) | |
| 24 | 23 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐷 × {𝑋}) = (𝑦 ∈ 𝐷 ↦ 𝑋)) |
| 25 | eqidd 2730 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 )) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 ))) | |
| 26 | 17, 18, 22, 24, 25 | offval2 7637 | . 2 ⊢ (𝜑 → ((𝐷 × {𝑋}) ∘f (.r‘𝑅)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 ))) = (𝑦 ∈ 𝐷 ↦ (𝑋(.r‘𝑅)if(𝑦 = 𝐾, 1 , 0 )))) |
| 27 | oveq2 7361 | . . . . 5 ⊢ ( 1 = if(𝑦 = 𝐾, 1 , 0 ) → (𝑋(.r‘𝑅) 1 ) = (𝑋(.r‘𝑅)if(𝑦 = 𝐾, 1 , 0 ))) | |
| 28 | 27 | eqeq1d 2731 | . . . 4 ⊢ ( 1 = if(𝑦 = 𝐾, 1 , 0 ) → ((𝑋(.r‘𝑅) 1 ) = if(𝑦 = 𝐾, 𝑋, 0 ) ↔ (𝑋(.r‘𝑅)if(𝑦 = 𝐾, 1 , 0 )) = if(𝑦 = 𝐾, 𝑋, 0 ))) |
| 29 | oveq2 7361 | . . . . 5 ⊢ ( 0 = if(𝑦 = 𝐾, 1 , 0 ) → (𝑋(.r‘𝑅) 0 ) = (𝑋(.r‘𝑅)if(𝑦 = 𝐾, 1 , 0 ))) | |
| 30 | 29 | eqeq1d 2731 | . . . 4 ⊢ ( 0 = if(𝑦 = 𝐾, 1 , 0 ) → ((𝑋(.r‘𝑅) 0 ) = if(𝑦 = 𝐾, 𝑋, 0 ) ↔ (𝑋(.r‘𝑅)if(𝑦 = 𝐾, 1 , 0 )) = if(𝑦 = 𝐾, 𝑋, 0 ))) |
| 31 | 3, 5, 9 | ringridm 20173 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋(.r‘𝑅) 1 ) = 𝑋) |
| 32 | 11, 7, 31 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑋(.r‘𝑅) 1 ) = 𝑋) |
| 33 | iftrue 4484 | . . . . . 6 ⊢ (𝑦 = 𝐾 → if(𝑦 = 𝐾, 𝑋, 0 ) = 𝑋) | |
| 34 | 33 | eqcomd 2735 | . . . . 5 ⊢ (𝑦 = 𝐾 → 𝑋 = if(𝑦 = 𝐾, 𝑋, 0 )) |
| 35 | 32, 34 | sylan9eq 2784 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 = 𝐾) → (𝑋(.r‘𝑅) 1 ) = if(𝑦 = 𝐾, 𝑋, 0 )) |
| 36 | 3, 5, 8 | ringrz 20197 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋(.r‘𝑅) 0 ) = 0 ) |
| 37 | 11, 7, 36 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑋(.r‘𝑅) 0 ) = 0 ) |
| 38 | iffalse 4487 | . . . . . 6 ⊢ (¬ 𝑦 = 𝐾 → if(𝑦 = 𝐾, 𝑋, 0 ) = 0 ) | |
| 39 | 38 | eqcomd 2735 | . . . . 5 ⊢ (¬ 𝑦 = 𝐾 → 0 = if(𝑦 = 𝐾, 𝑋, 0 )) |
| 40 | 37, 39 | sylan9eq 2784 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑦 = 𝐾) → (𝑋(.r‘𝑅) 0 ) = if(𝑦 = 𝐾, 𝑋, 0 )) |
| 41 | 28, 30, 35, 40 | ifbothda 4517 | . . 3 ⊢ (𝜑 → (𝑋(.r‘𝑅)if(𝑦 = 𝐾, 1 , 0 )) = if(𝑦 = 𝐾, 𝑋, 0 )) |
| 42 | 41 | mpteq2dv 5189 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ (𝑋(.r‘𝑅)if(𝑦 = 𝐾, 1 , 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 𝑋, 0 ))) |
| 43 | 14, 26, 42 | 3eqtrd 2768 | 1 ⊢ (𝜑 → (𝑋 · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 𝑋, 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3396 Vcvv 3438 ifcif 4478 {csn 4579 ↦ cmpt 5176 × cxp 5621 ◡ccnv 5622 “ cima 5626 ‘cfv 6486 (class class class)co 7353 ∘f cof 7615 ↑m cmap 8760 Fincfn 8879 ℕcn 12146 ℕ0cn0 12402 Basecbs 17138 .rcmulr 17180 ·𝑠 cvsca 17183 0gc0g 17361 1rcur 20084 Ringcrg 20136 mPoly cmpl 21831 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-tset 17198 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-minusg 18834 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-psr 21834 df-mpl 21836 |
| This theorem is referenced by: mplascl 21987 mplmon2cl 21991 mplmon2mul 21992 mplcoe4 21994 coe1tm 22175 |
| Copyright terms: Public domain | W3C validator |