MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplmon2 Structured version   Visualization version   GIF version

Theorem mplmon2 20265
Description: Express a scaled monomial. (Contributed by Stefan O'Rear, 8-Mar-2015.)
Hypotheses
Ref Expression
mplmon2.p 𝑃 = (𝐼 mPoly 𝑅)
mplmon2.v · = ( ·𝑠𝑃)
mplmon2.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mplmon2.o 1 = (1r𝑅)
mplmon2.z 0 = (0g𝑅)
mplmon2.b 𝐵 = (Base‘𝑅)
mplmon2.i (𝜑𝐼𝑊)
mplmon2.r (𝜑𝑅 ∈ Ring)
mplmon2.k (𝜑𝐾𝐷)
mplmon2.x (𝜑𝑋𝐵)
Assertion
Ref Expression
mplmon2 (𝜑 → (𝑋 · (𝑦𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 ))) = (𝑦𝐷 ↦ if(𝑦 = 𝐾, 𝑋, 0 )))
Distinct variable groups:   𝜑,𝑦   𝑦,𝐵   𝑦,𝐷   𝑓,𝐼   𝑓,𝐾,𝑦   𝑦, 1   𝑦,𝑅   𝑦,𝑋   𝑦, 0
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑃(𝑦,𝑓)   𝑅(𝑓)   · (𝑦,𝑓)   1 (𝑓)   𝐼(𝑦)   𝑊(𝑦,𝑓)   𝑋(𝑓)   0 (𝑓)

Proof of Theorem mplmon2
StepHypRef Expression
1 mplmon2.p . . 3 𝑃 = (𝐼 mPoly 𝑅)
2 mplmon2.v . . 3 · = ( ·𝑠𝑃)
3 mplmon2.b . . 3 𝐵 = (Base‘𝑅)
4 eqid 2819 . . 3 (Base‘𝑃) = (Base‘𝑃)
5 eqid 2819 . . 3 (.r𝑅) = (.r𝑅)
6 mplmon2.d . . 3 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
7 mplmon2.x . . 3 (𝜑𝑋𝐵)
8 mplmon2.z . . . 4 0 = (0g𝑅)
9 mplmon2.o . . . 4 1 = (1r𝑅)
10 mplmon2.i . . . 4 (𝜑𝐼𝑊)
11 mplmon2.r . . . 4 (𝜑𝑅 ∈ Ring)
12 mplmon2.k . . . 4 (𝜑𝐾𝐷)
131, 4, 8, 9, 6, 10, 11, 12mplmon 20236 . . 3 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 )) ∈ (Base‘𝑃))
141, 2, 3, 4, 5, 6, 7, 13mplvsca 20219 . 2 (𝜑 → (𝑋 · (𝑦𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 ))) = ((𝐷 × {𝑋}) ∘f (.r𝑅)(𝑦𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 ))))
15 ovex 7181 . . . . 5 (ℕ0m 𝐼) ∈ V
166, 15rabex2 5228 . . . 4 𝐷 ∈ V
1716a1i 11 . . 3 (𝜑𝐷 ∈ V)
187adantr 483 . . 3 ((𝜑𝑦𝐷) → 𝑋𝐵)
199fvexi 6677 . . . . 5 1 ∈ V
208fvexi 6677 . . . . 5 0 ∈ V
2119, 20ifex 4513 . . . 4 if(𝑦 = 𝐾, 1 , 0 ) ∈ V
2221a1i 11 . . 3 ((𝜑𝑦𝐷) → if(𝑦 = 𝐾, 1 , 0 ) ∈ V)
23 fconstmpt 5607 . . . 4 (𝐷 × {𝑋}) = (𝑦𝐷𝑋)
2423a1i 11 . . 3 (𝜑 → (𝐷 × {𝑋}) = (𝑦𝐷𝑋))
25 eqidd 2820 . . 3 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 )))
2617, 18, 22, 24, 25offval2 7418 . 2 (𝜑 → ((𝐷 × {𝑋}) ∘f (.r𝑅)(𝑦𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 ))) = (𝑦𝐷 ↦ (𝑋(.r𝑅)if(𝑦 = 𝐾, 1 , 0 ))))
27 oveq2 7156 . . . . 5 ( 1 = if(𝑦 = 𝐾, 1 , 0 ) → (𝑋(.r𝑅) 1 ) = (𝑋(.r𝑅)if(𝑦 = 𝐾, 1 , 0 )))
2827eqeq1d 2821 . . . 4 ( 1 = if(𝑦 = 𝐾, 1 , 0 ) → ((𝑋(.r𝑅) 1 ) = if(𝑦 = 𝐾, 𝑋, 0 ) ↔ (𝑋(.r𝑅)if(𝑦 = 𝐾, 1 , 0 )) = if(𝑦 = 𝐾, 𝑋, 0 )))
29 oveq2 7156 . . . . 5 ( 0 = if(𝑦 = 𝐾, 1 , 0 ) → (𝑋(.r𝑅) 0 ) = (𝑋(.r𝑅)if(𝑦 = 𝐾, 1 , 0 )))
3029eqeq1d 2821 . . . 4 ( 0 = if(𝑦 = 𝐾, 1 , 0 ) → ((𝑋(.r𝑅) 0 ) = if(𝑦 = 𝐾, 𝑋, 0 ) ↔ (𝑋(.r𝑅)if(𝑦 = 𝐾, 1 , 0 )) = if(𝑦 = 𝐾, 𝑋, 0 )))
313, 5, 9ringridm 19314 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋(.r𝑅) 1 ) = 𝑋)
3211, 7, 31syl2anc 586 . . . . 5 (𝜑 → (𝑋(.r𝑅) 1 ) = 𝑋)
33 iftrue 4471 . . . . . 6 (𝑦 = 𝐾 → if(𝑦 = 𝐾, 𝑋, 0 ) = 𝑋)
3433eqcomd 2825 . . . . 5 (𝑦 = 𝐾𝑋 = if(𝑦 = 𝐾, 𝑋, 0 ))
3532, 34sylan9eq 2874 . . . 4 ((𝜑𝑦 = 𝐾) → (𝑋(.r𝑅) 1 ) = if(𝑦 = 𝐾, 𝑋, 0 ))
363, 5, 8ringrz 19330 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋(.r𝑅) 0 ) = 0 )
3711, 7, 36syl2anc 586 . . . . 5 (𝜑 → (𝑋(.r𝑅) 0 ) = 0 )
38 iffalse 4474 . . . . . 6 𝑦 = 𝐾 → if(𝑦 = 𝐾, 𝑋, 0 ) = 0 )
3938eqcomd 2825 . . . . 5 𝑦 = 𝐾0 = if(𝑦 = 𝐾, 𝑋, 0 ))
4037, 39sylan9eq 2874 . . . 4 ((𝜑 ∧ ¬ 𝑦 = 𝐾) → (𝑋(.r𝑅) 0 ) = if(𝑦 = 𝐾, 𝑋, 0 ))
4128, 30, 35, 40ifbothda 4502 . . 3 (𝜑 → (𝑋(.r𝑅)if(𝑦 = 𝐾, 1 , 0 )) = if(𝑦 = 𝐾, 𝑋, 0 ))
4241mpteq2dv 5153 . 2 (𝜑 → (𝑦𝐷 ↦ (𝑋(.r𝑅)if(𝑦 = 𝐾, 1 , 0 ))) = (𝑦𝐷 ↦ if(𝑦 = 𝐾, 𝑋, 0 )))
4314, 26, 423eqtrd 2858 1 (𝜑 → (𝑋 · (𝑦𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 ))) = (𝑦𝐷 ↦ if(𝑦 = 𝐾, 𝑋, 0 )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1530  wcel 2107  {crab 3140  Vcvv 3493  ifcif 4465  {csn 4559  cmpt 5137   × cxp 5546  ccnv 5547  cima 5551  cfv 6348  (class class class)co 7148  f cof 7399  m cmap 8398  Fincfn 8501  cn 11630  0cn0 11889  Basecbs 16475  .rcmulr 16558   ·𝑠 cvsca 16561  0gc0g 16705  1rcur 19243  Ringcrg 19289   mPoly cmpl 20125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-1st 7681  df-2nd 7682  df-supp 7823  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12885  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-tset 16576  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-mgp 19232  df-ur 19244  df-ring 19291  df-psr 20128  df-mpl 20130
This theorem is referenced by:  mplascl  20268  mplmon2cl  20272  mplmon2mul  20273  mplcoe4  20275  coe1tm  20433
  Copyright terms: Public domain W3C validator