| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mplmon2 | Structured version Visualization version GIF version | ||
| Description: Express a scaled monomial. (Contributed by Stefan O'Rear, 8-Mar-2015.) |
| Ref | Expression |
|---|---|
| mplmon2.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mplmon2.v | ⊢ · = ( ·𝑠 ‘𝑃) |
| mplmon2.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| mplmon2.o | ⊢ 1 = (1r‘𝑅) |
| mplmon2.z | ⊢ 0 = (0g‘𝑅) |
| mplmon2.b | ⊢ 𝐵 = (Base‘𝑅) |
| mplmon2.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| mplmon2.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| mplmon2.k | ⊢ (𝜑 → 𝐾 ∈ 𝐷) |
| mplmon2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| mplmon2 | ⊢ (𝜑 → (𝑋 · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 𝑋, 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplmon2.p | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 2 | mplmon2.v | . . 3 ⊢ · = ( ·𝑠 ‘𝑃) | |
| 3 | mplmon2.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 4 | eqid 2733 | . . 3 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 5 | eqid 2733 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 6 | mplmon2.d | . . 3 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 7 | mplmon2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 8 | mplmon2.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 9 | mplmon2.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
| 10 | mplmon2.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 11 | mplmon2.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 12 | mplmon2.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝐷) | |
| 13 | 1, 4, 8, 9, 6, 10, 11, 12 | mplmon 21980 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 )) ∈ (Base‘𝑃)) |
| 14 | 1, 2, 3, 4, 5, 6, 7, 13 | mplvsca 21962 | . 2 ⊢ (𝜑 → (𝑋 · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 ))) = ((𝐷 × {𝑋}) ∘f (.r‘𝑅)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 )))) |
| 15 | ovex 7388 | . . . . 5 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
| 16 | 6, 15 | rabex2 5283 | . . . 4 ⊢ 𝐷 ∈ V |
| 17 | 16 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐷 ∈ V) |
| 18 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑋 ∈ 𝐵) |
| 19 | 9 | fvexi 6845 | . . . . 5 ⊢ 1 ∈ V |
| 20 | 8 | fvexi 6845 | . . . . 5 ⊢ 0 ∈ V |
| 21 | 19, 20 | ifex 4527 | . . . 4 ⊢ if(𝑦 = 𝐾, 1 , 0 ) ∈ V |
| 22 | 21 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → if(𝑦 = 𝐾, 1 , 0 ) ∈ V) |
| 23 | fconstmpt 5683 | . . . 4 ⊢ (𝐷 × {𝑋}) = (𝑦 ∈ 𝐷 ↦ 𝑋) | |
| 24 | 23 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐷 × {𝑋}) = (𝑦 ∈ 𝐷 ↦ 𝑋)) |
| 25 | eqidd 2734 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 )) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 ))) | |
| 26 | 17, 18, 22, 24, 25 | offval2 7639 | . 2 ⊢ (𝜑 → ((𝐷 × {𝑋}) ∘f (.r‘𝑅)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 ))) = (𝑦 ∈ 𝐷 ↦ (𝑋(.r‘𝑅)if(𝑦 = 𝐾, 1 , 0 )))) |
| 27 | oveq2 7363 | . . . . 5 ⊢ ( 1 = if(𝑦 = 𝐾, 1 , 0 ) → (𝑋(.r‘𝑅) 1 ) = (𝑋(.r‘𝑅)if(𝑦 = 𝐾, 1 , 0 ))) | |
| 28 | 27 | eqeq1d 2735 | . . . 4 ⊢ ( 1 = if(𝑦 = 𝐾, 1 , 0 ) → ((𝑋(.r‘𝑅) 1 ) = if(𝑦 = 𝐾, 𝑋, 0 ) ↔ (𝑋(.r‘𝑅)if(𝑦 = 𝐾, 1 , 0 )) = if(𝑦 = 𝐾, 𝑋, 0 ))) |
| 29 | oveq2 7363 | . . . . 5 ⊢ ( 0 = if(𝑦 = 𝐾, 1 , 0 ) → (𝑋(.r‘𝑅) 0 ) = (𝑋(.r‘𝑅)if(𝑦 = 𝐾, 1 , 0 ))) | |
| 30 | 29 | eqeq1d 2735 | . . . 4 ⊢ ( 0 = if(𝑦 = 𝐾, 1 , 0 ) → ((𝑋(.r‘𝑅) 0 ) = if(𝑦 = 𝐾, 𝑋, 0 ) ↔ (𝑋(.r‘𝑅)if(𝑦 = 𝐾, 1 , 0 )) = if(𝑦 = 𝐾, 𝑋, 0 ))) |
| 31 | 3, 5, 9 | ringridm 20198 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋(.r‘𝑅) 1 ) = 𝑋) |
| 32 | 11, 7, 31 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑋(.r‘𝑅) 1 ) = 𝑋) |
| 33 | iftrue 4482 | . . . . . 6 ⊢ (𝑦 = 𝐾 → if(𝑦 = 𝐾, 𝑋, 0 ) = 𝑋) | |
| 34 | 33 | eqcomd 2739 | . . . . 5 ⊢ (𝑦 = 𝐾 → 𝑋 = if(𝑦 = 𝐾, 𝑋, 0 )) |
| 35 | 32, 34 | sylan9eq 2788 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 = 𝐾) → (𝑋(.r‘𝑅) 1 ) = if(𝑦 = 𝐾, 𝑋, 0 )) |
| 36 | 3, 5, 8 | ringrz 20222 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋(.r‘𝑅) 0 ) = 0 ) |
| 37 | 11, 7, 36 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑋(.r‘𝑅) 0 ) = 0 ) |
| 38 | iffalse 4485 | . . . . . 6 ⊢ (¬ 𝑦 = 𝐾 → if(𝑦 = 𝐾, 𝑋, 0 ) = 0 ) | |
| 39 | 38 | eqcomd 2739 | . . . . 5 ⊢ (¬ 𝑦 = 𝐾 → 0 = if(𝑦 = 𝐾, 𝑋, 0 )) |
| 40 | 37, 39 | sylan9eq 2788 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑦 = 𝐾) → (𝑋(.r‘𝑅) 0 ) = if(𝑦 = 𝐾, 𝑋, 0 )) |
| 41 | 28, 30, 35, 40 | ifbothda 4515 | . . 3 ⊢ (𝜑 → (𝑋(.r‘𝑅)if(𝑦 = 𝐾, 1 , 0 )) = if(𝑦 = 𝐾, 𝑋, 0 )) |
| 42 | 41 | mpteq2dv 5189 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ (𝑋(.r‘𝑅)if(𝑦 = 𝐾, 1 , 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 𝑋, 0 ))) |
| 43 | 14, 26, 42 | 3eqtrd 2772 | 1 ⊢ (𝜑 → (𝑋 · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 𝑋, 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {crab 3397 Vcvv 3438 ifcif 4476 {csn 4577 ↦ cmpt 5176 × cxp 5619 ◡ccnv 5620 “ cima 5624 ‘cfv 6489 (class class class)co 7355 ∘f cof 7617 ↑m cmap 8759 Fincfn 8878 ℕcn 12135 ℕ0cn0 12391 Basecbs 17130 .rcmulr 17172 ·𝑠 cvsca 17175 0gc0g 17353 1rcur 20109 Ringcrg 20161 mPoly cmpl 21853 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-map 8761 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-fsupp 9256 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-5 12201 df-6 12202 df-7 12203 df-8 12204 df-9 12205 df-n0 12392 df-z 12479 df-uz 12743 df-fz 13418 df-struct 17068 df-sets 17085 df-slot 17103 df-ndx 17115 df-base 17131 df-ress 17152 df-plusg 17184 df-mulr 17185 df-sca 17187 df-vsca 17188 df-tset 17190 df-0g 17355 df-mgm 18558 df-sgrp 18637 df-mnd 18653 df-grp 18859 df-minusg 18860 df-cmn 19704 df-abl 19705 df-mgp 20069 df-rng 20081 df-ur 20110 df-ring 20163 df-psr 21856 df-mpl 21858 |
| This theorem is referenced by: mplascl 22009 mplmon2cl 22013 mplmon2mul 22014 mplcoe4 22016 coe1tm 22197 |
| Copyright terms: Public domain | W3C validator |