| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mplmon2 | Structured version Visualization version GIF version | ||
| Description: Express a scaled monomial. (Contributed by Stefan O'Rear, 8-Mar-2015.) |
| Ref | Expression |
|---|---|
| mplmon2.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mplmon2.v | ⊢ · = ( ·𝑠 ‘𝑃) |
| mplmon2.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| mplmon2.o | ⊢ 1 = (1r‘𝑅) |
| mplmon2.z | ⊢ 0 = (0g‘𝑅) |
| mplmon2.b | ⊢ 𝐵 = (Base‘𝑅) |
| mplmon2.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| mplmon2.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| mplmon2.k | ⊢ (𝜑 → 𝐾 ∈ 𝐷) |
| mplmon2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| mplmon2 | ⊢ (𝜑 → (𝑋 · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 𝑋, 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplmon2.p | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 2 | mplmon2.v | . . 3 ⊢ · = ( ·𝑠 ‘𝑃) | |
| 3 | mplmon2.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 4 | eqid 2734 | . . 3 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 5 | eqid 2734 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 6 | mplmon2.d | . . 3 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 7 | mplmon2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 8 | mplmon2.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 9 | mplmon2.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
| 10 | mplmon2.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 11 | mplmon2.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 12 | mplmon2.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝐷) | |
| 13 | 1, 4, 8, 9, 6, 10, 11, 12 | mplmon 21980 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 )) ∈ (Base‘𝑃)) |
| 14 | 1, 2, 3, 4, 5, 6, 7, 13 | mplvsca 21962 | . 2 ⊢ (𝜑 → (𝑋 · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 ))) = ((𝐷 × {𝑋}) ∘f (.r‘𝑅)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 )))) |
| 15 | ovex 7433 | . . . . 5 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
| 16 | 6, 15 | rabex2 5309 | . . . 4 ⊢ 𝐷 ∈ V |
| 17 | 16 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐷 ∈ V) |
| 18 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑋 ∈ 𝐵) |
| 19 | 9 | fvexi 6887 | . . . . 5 ⊢ 1 ∈ V |
| 20 | 8 | fvexi 6887 | . . . . 5 ⊢ 0 ∈ V |
| 21 | 19, 20 | ifex 4549 | . . . 4 ⊢ if(𝑦 = 𝐾, 1 , 0 ) ∈ V |
| 22 | 21 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → if(𝑦 = 𝐾, 1 , 0 ) ∈ V) |
| 23 | fconstmpt 5714 | . . . 4 ⊢ (𝐷 × {𝑋}) = (𝑦 ∈ 𝐷 ↦ 𝑋) | |
| 24 | 23 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐷 × {𝑋}) = (𝑦 ∈ 𝐷 ↦ 𝑋)) |
| 25 | eqidd 2735 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 )) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 ))) | |
| 26 | 17, 18, 22, 24, 25 | offval2 7686 | . 2 ⊢ (𝜑 → ((𝐷 × {𝑋}) ∘f (.r‘𝑅)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 ))) = (𝑦 ∈ 𝐷 ↦ (𝑋(.r‘𝑅)if(𝑦 = 𝐾, 1 , 0 )))) |
| 27 | oveq2 7408 | . . . . 5 ⊢ ( 1 = if(𝑦 = 𝐾, 1 , 0 ) → (𝑋(.r‘𝑅) 1 ) = (𝑋(.r‘𝑅)if(𝑦 = 𝐾, 1 , 0 ))) | |
| 28 | 27 | eqeq1d 2736 | . . . 4 ⊢ ( 1 = if(𝑦 = 𝐾, 1 , 0 ) → ((𝑋(.r‘𝑅) 1 ) = if(𝑦 = 𝐾, 𝑋, 0 ) ↔ (𝑋(.r‘𝑅)if(𝑦 = 𝐾, 1 , 0 )) = if(𝑦 = 𝐾, 𝑋, 0 ))) |
| 29 | oveq2 7408 | . . . . 5 ⊢ ( 0 = if(𝑦 = 𝐾, 1 , 0 ) → (𝑋(.r‘𝑅) 0 ) = (𝑋(.r‘𝑅)if(𝑦 = 𝐾, 1 , 0 ))) | |
| 30 | 29 | eqeq1d 2736 | . . . 4 ⊢ ( 0 = if(𝑦 = 𝐾, 1 , 0 ) → ((𝑋(.r‘𝑅) 0 ) = if(𝑦 = 𝐾, 𝑋, 0 ) ↔ (𝑋(.r‘𝑅)if(𝑦 = 𝐾, 1 , 0 )) = if(𝑦 = 𝐾, 𝑋, 0 ))) |
| 31 | 3, 5, 9 | ringridm 20217 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋(.r‘𝑅) 1 ) = 𝑋) |
| 32 | 11, 7, 31 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑋(.r‘𝑅) 1 ) = 𝑋) |
| 33 | iftrue 4504 | . . . . . 6 ⊢ (𝑦 = 𝐾 → if(𝑦 = 𝐾, 𝑋, 0 ) = 𝑋) | |
| 34 | 33 | eqcomd 2740 | . . . . 5 ⊢ (𝑦 = 𝐾 → 𝑋 = if(𝑦 = 𝐾, 𝑋, 0 )) |
| 35 | 32, 34 | sylan9eq 2789 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 = 𝐾) → (𝑋(.r‘𝑅) 1 ) = if(𝑦 = 𝐾, 𝑋, 0 )) |
| 36 | 3, 5, 8 | ringrz 20241 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋(.r‘𝑅) 0 ) = 0 ) |
| 37 | 11, 7, 36 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑋(.r‘𝑅) 0 ) = 0 ) |
| 38 | iffalse 4507 | . . . . . 6 ⊢ (¬ 𝑦 = 𝐾 → if(𝑦 = 𝐾, 𝑋, 0 ) = 0 ) | |
| 39 | 38 | eqcomd 2740 | . . . . 5 ⊢ (¬ 𝑦 = 𝐾 → 0 = if(𝑦 = 𝐾, 𝑋, 0 )) |
| 40 | 37, 39 | sylan9eq 2789 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑦 = 𝐾) → (𝑋(.r‘𝑅) 0 ) = if(𝑦 = 𝐾, 𝑋, 0 )) |
| 41 | 28, 30, 35, 40 | ifbothda 4537 | . . 3 ⊢ (𝜑 → (𝑋(.r‘𝑅)if(𝑦 = 𝐾, 1 , 0 )) = if(𝑦 = 𝐾, 𝑋, 0 )) |
| 42 | 41 | mpteq2dv 5213 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ (𝑋(.r‘𝑅)if(𝑦 = 𝐾, 1 , 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 𝑋, 0 ))) |
| 43 | 14, 26, 42 | 3eqtrd 2773 | 1 ⊢ (𝜑 → (𝑋 · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 𝑋, 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {crab 3413 Vcvv 3457 ifcif 4498 {csn 4599 ↦ cmpt 5199 × cxp 5650 ◡ccnv 5651 “ cima 5655 ‘cfv 6528 (class class class)co 7400 ∘f cof 7664 ↑m cmap 8835 Fincfn 8954 ℕcn 12233 ℕ0cn0 12494 Basecbs 17215 .rcmulr 17259 ·𝑠 cvsca 17262 0gc0g 17440 1rcur 20128 Ringcrg 20180 mPoly cmpl 21853 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-cnex 11178 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 ax-pre-mulgt0 11199 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-of 7666 df-om 7857 df-1st 7983 df-2nd 7984 df-supp 8155 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-1o 8475 df-er 8714 df-map 8837 df-en 8955 df-dom 8956 df-sdom 8957 df-fin 8958 df-fsupp 9369 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-sub 11461 df-neg 11462 df-nn 12234 df-2 12296 df-3 12297 df-4 12298 df-5 12299 df-6 12300 df-7 12301 df-8 12302 df-9 12303 df-n0 12495 df-z 12582 df-uz 12846 df-fz 13515 df-struct 17153 df-sets 17170 df-slot 17188 df-ndx 17200 df-base 17216 df-ress 17239 df-plusg 17271 df-mulr 17272 df-sca 17274 df-vsca 17275 df-tset 17277 df-0g 17442 df-mgm 18605 df-sgrp 18684 df-mnd 18700 df-grp 18906 df-minusg 18907 df-cmn 19750 df-abl 19751 df-mgp 20088 df-rng 20100 df-ur 20129 df-ring 20182 df-psr 21856 df-mpl 21858 |
| This theorem is referenced by: mplascl 22009 mplmon2cl 22013 mplmon2mul 22014 mplcoe4 22016 coe1tm 22197 |
| Copyright terms: Public domain | W3C validator |