MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplmon2 Structured version   Visualization version   GIF version

Theorem mplmon2 20732
Description: Express a scaled monomial. (Contributed by Stefan O'Rear, 8-Mar-2015.)
Hypotheses
Ref Expression
mplmon2.p 𝑃 = (𝐼 mPoly 𝑅)
mplmon2.v · = ( ·𝑠𝑃)
mplmon2.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mplmon2.o 1 = (1r𝑅)
mplmon2.z 0 = (0g𝑅)
mplmon2.b 𝐵 = (Base‘𝑅)
mplmon2.i (𝜑𝐼𝑊)
mplmon2.r (𝜑𝑅 ∈ Ring)
mplmon2.k (𝜑𝐾𝐷)
mplmon2.x (𝜑𝑋𝐵)
Assertion
Ref Expression
mplmon2 (𝜑 → (𝑋 · (𝑦𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 ))) = (𝑦𝐷 ↦ if(𝑦 = 𝐾, 𝑋, 0 )))
Distinct variable groups:   𝜑,𝑦   𝑦,𝐵   𝑦,𝐷   𝑓,𝐼   𝑓,𝐾,𝑦   𝑦, 1   𝑦,𝑅   𝑦,𝑋   𝑦, 0
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑃(𝑦,𝑓)   𝑅(𝑓)   · (𝑦,𝑓)   1 (𝑓)   𝐼(𝑦)   𝑊(𝑦,𝑓)   𝑋(𝑓)   0 (𝑓)

Proof of Theorem mplmon2
StepHypRef Expression
1 mplmon2.p . . 3 𝑃 = (𝐼 mPoly 𝑅)
2 mplmon2.v . . 3 · = ( ·𝑠𝑃)
3 mplmon2.b . . 3 𝐵 = (Base‘𝑅)
4 eqid 2798 . . 3 (Base‘𝑃) = (Base‘𝑃)
5 eqid 2798 . . 3 (.r𝑅) = (.r𝑅)
6 mplmon2.d . . 3 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
7 mplmon2.x . . 3 (𝜑𝑋𝐵)
8 mplmon2.z . . . 4 0 = (0g𝑅)
9 mplmon2.o . . . 4 1 = (1r𝑅)
10 mplmon2.i . . . 4 (𝜑𝐼𝑊)
11 mplmon2.r . . . 4 (𝜑𝑅 ∈ Ring)
12 mplmon2.k . . . 4 (𝜑𝐾𝐷)
131, 4, 8, 9, 6, 10, 11, 12mplmon 20703 . . 3 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 )) ∈ (Base‘𝑃))
141, 2, 3, 4, 5, 6, 7, 13mplvsca 20686 . 2 (𝜑 → (𝑋 · (𝑦𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 ))) = ((𝐷 × {𝑋}) ∘f (.r𝑅)(𝑦𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 ))))
15 ovex 7168 . . . . 5 (ℕ0m 𝐼) ∈ V
166, 15rabex2 5201 . . . 4 𝐷 ∈ V
1716a1i 11 . . 3 (𝜑𝐷 ∈ V)
187adantr 484 . . 3 ((𝜑𝑦𝐷) → 𝑋𝐵)
199fvexi 6659 . . . . 5 1 ∈ V
208fvexi 6659 . . . . 5 0 ∈ V
2119, 20ifex 4473 . . . 4 if(𝑦 = 𝐾, 1 , 0 ) ∈ V
2221a1i 11 . . 3 ((𝜑𝑦𝐷) → if(𝑦 = 𝐾, 1 , 0 ) ∈ V)
23 fconstmpt 5578 . . . 4 (𝐷 × {𝑋}) = (𝑦𝐷𝑋)
2423a1i 11 . . 3 (𝜑 → (𝐷 × {𝑋}) = (𝑦𝐷𝑋))
25 eqidd 2799 . . 3 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 )))
2617, 18, 22, 24, 25offval2 7406 . 2 (𝜑 → ((𝐷 × {𝑋}) ∘f (.r𝑅)(𝑦𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 ))) = (𝑦𝐷 ↦ (𝑋(.r𝑅)if(𝑦 = 𝐾, 1 , 0 ))))
27 oveq2 7143 . . . . 5 ( 1 = if(𝑦 = 𝐾, 1 , 0 ) → (𝑋(.r𝑅) 1 ) = (𝑋(.r𝑅)if(𝑦 = 𝐾, 1 , 0 )))
2827eqeq1d 2800 . . . 4 ( 1 = if(𝑦 = 𝐾, 1 , 0 ) → ((𝑋(.r𝑅) 1 ) = if(𝑦 = 𝐾, 𝑋, 0 ) ↔ (𝑋(.r𝑅)if(𝑦 = 𝐾, 1 , 0 )) = if(𝑦 = 𝐾, 𝑋, 0 )))
29 oveq2 7143 . . . . 5 ( 0 = if(𝑦 = 𝐾, 1 , 0 ) → (𝑋(.r𝑅) 0 ) = (𝑋(.r𝑅)if(𝑦 = 𝐾, 1 , 0 )))
3029eqeq1d 2800 . . . 4 ( 0 = if(𝑦 = 𝐾, 1 , 0 ) → ((𝑋(.r𝑅) 0 ) = if(𝑦 = 𝐾, 𝑋, 0 ) ↔ (𝑋(.r𝑅)if(𝑦 = 𝐾, 1 , 0 )) = if(𝑦 = 𝐾, 𝑋, 0 )))
313, 5, 9ringridm 19318 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋(.r𝑅) 1 ) = 𝑋)
3211, 7, 31syl2anc 587 . . . . 5 (𝜑 → (𝑋(.r𝑅) 1 ) = 𝑋)
33 iftrue 4431 . . . . . 6 (𝑦 = 𝐾 → if(𝑦 = 𝐾, 𝑋, 0 ) = 𝑋)
3433eqcomd 2804 . . . . 5 (𝑦 = 𝐾𝑋 = if(𝑦 = 𝐾, 𝑋, 0 ))
3532, 34sylan9eq 2853 . . . 4 ((𝜑𝑦 = 𝐾) → (𝑋(.r𝑅) 1 ) = if(𝑦 = 𝐾, 𝑋, 0 ))
363, 5, 8ringrz 19334 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋(.r𝑅) 0 ) = 0 )
3711, 7, 36syl2anc 587 . . . . 5 (𝜑 → (𝑋(.r𝑅) 0 ) = 0 )
38 iffalse 4434 . . . . . 6 𝑦 = 𝐾 → if(𝑦 = 𝐾, 𝑋, 0 ) = 0 )
3938eqcomd 2804 . . . . 5 𝑦 = 𝐾0 = if(𝑦 = 𝐾, 𝑋, 0 ))
4037, 39sylan9eq 2853 . . . 4 ((𝜑 ∧ ¬ 𝑦 = 𝐾) → (𝑋(.r𝑅) 0 ) = if(𝑦 = 𝐾, 𝑋, 0 ))
4128, 30, 35, 40ifbothda 4462 . . 3 (𝜑 → (𝑋(.r𝑅)if(𝑦 = 𝐾, 1 , 0 )) = if(𝑦 = 𝐾, 𝑋, 0 ))
4241mpteq2dv 5126 . 2 (𝜑 → (𝑦𝐷 ↦ (𝑋(.r𝑅)if(𝑦 = 𝐾, 1 , 0 ))) = (𝑦𝐷 ↦ if(𝑦 = 𝐾, 𝑋, 0 )))
4314, 26, 423eqtrd 2837 1 (𝜑 → (𝑋 · (𝑦𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 ))) = (𝑦𝐷 ↦ if(𝑦 = 𝐾, 𝑋, 0 )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2111  {crab 3110  Vcvv 3441  ifcif 4425  {csn 4525  cmpt 5110   × cxp 5517  ccnv 5518  cima 5522  cfv 6324  (class class class)co 7135  f cof 7387  m cmap 8389  Fincfn 8492  cn 11625  0cn0 11885  Basecbs 16475  .rcmulr 16558   ·𝑠 cvsca 16561  0gc0g 16705  1rcur 19244  Ringcrg 19290   mPoly cmpl 20591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-tset 16576  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-mgp 19233  df-ur 19245  df-ring 19292  df-psr 20594  df-mpl 20596
This theorem is referenced by:  mplascl  20735  mplmon2cl  20739  mplmon2mul  20740  mplcoe4  20742  coe1tm  20902
  Copyright terms: Public domain W3C validator