![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rankbnd | Structured version Visualization version GIF version |
Description: The rank of a set is bounded by a bound for the successor of its members. (Contributed by NM, 18-Sep-2006.) |
Ref | Expression |
---|---|
rankr1b.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
rankbnd | ⊢ (∀𝑥 ∈ 𝐴 suc (rank‘𝑥) ⊆ 𝐵 ↔ (rank‘𝐴) ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankr1b.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | 1 | rankval4 9088 | . . 3 ⊢ (rank‘𝐴) = ∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥) |
3 | 2 | sseq1i 3879 | . 2 ⊢ ((rank‘𝐴) ⊆ 𝐵 ↔ ∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥) ⊆ 𝐵) |
4 | iunss 4831 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥) ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 suc (rank‘𝑥) ⊆ 𝐵) | |
5 | 3, 4 | bitr2i 268 | 1 ⊢ (∀𝑥 ∈ 𝐴 suc (rank‘𝑥) ⊆ 𝐵 ↔ (rank‘𝐴) ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∈ wcel 2050 ∀wral 3082 Vcvv 3409 ⊆ wss 3823 ∪ ciun 4788 suc csuc 6028 ‘cfv 6185 rankcrnk 8984 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-rep 5045 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-reg 8849 ax-inf2 8896 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-pss 3839 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-int 4746 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-om 7395 df-wrecs 7748 df-recs 7810 df-rdg 7848 df-r1 8985 df-rank 8986 |
This theorem is referenced by: rankxplim 9100 |
Copyright terms: Public domain | W3C validator |