Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reopn Structured version   Visualization version   GIF version

Theorem reopn 45260
Description: The reals are open with respect to the standard topology. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
reopn ℝ ∈ (topGen‘ran (,))

Proof of Theorem reopn
StepHypRef Expression
1 retop 24655 . 2 (topGen‘ran (,)) ∈ Top
2 uniretop 24656 . . 3 ℝ = (topGen‘ran (,))
32topopn 22799 . 2 ((topGen‘ran (,)) ∈ Top → ℝ ∈ (topGen‘ran (,)))
41, 3ax-mp 5 1 ℝ ∈ (topGen‘ran (,))
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  ran crn 5647  cfv 6519  cr 11085  (,)cioo 13319  topGenctg 17406  Topctop 22786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-cnex 11142  ax-resscn 11143  ax-pre-lttri 11160  ax-pre-lttrn 11161
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-po 5554  df-so 5555  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-ov 7397  df-oprab 7398  df-mpo 7399  df-1st 7977  df-2nd 7978  df-er 8682  df-en 8923  df-dom 8924  df-sdom 8925  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-ioo 13323  df-topgen 17412  df-top 22787  df-bases 22839
This theorem is referenced by:  fperdvper  45890  dirkeritg  46073  etransclem2  46207  etransclem23  46228  etransclem35  46240  etransclem38  46243  etransclem39  46244  etransclem44  46249  etransclem45  46250  etransclem47  46252
  Copyright terms: Public domain W3C validator