| Step | Hyp | Ref
| Expression |
| 1 | | etransclem47.k |
. . . . 5
⊢ 𝐾 = (𝐿 / (!‘(𝑃 − 1))) |
| 2 | 1 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝐾 = (𝐿 / (!‘(𝑃 − 1)))) |
| 3 | | etransclem47.q |
. . . . 5
⊢ (𝜑 → 𝑄 ∈ ((Poly‘ℤ) ∖
{0𝑝})) |
| 4 | | etransclem47.qe0 |
. . . . 5
⊢ (𝜑 → (𝑄‘e) = 0) |
| 5 | | etransclem47.a |
. . . . 5
⊢ 𝐴 = (coeff‘𝑄) |
| 6 | | etransclem47.m |
. . . . 5
⊢ 𝑀 = (deg‘𝑄) |
| 7 | | ssid 3986 |
. . . . . 6
⊢ ℝ
⊆ ℝ |
| 8 | 7 | a1i 11 |
. . . . 5
⊢ (𝜑 → ℝ ⊆
ℝ) |
| 9 | | reelprrecn 11226 |
. . . . . 6
⊢ ℝ
∈ {ℝ, ℂ} |
| 10 | 9 | a1i 11 |
. . . . 5
⊢ (𝜑 → ℝ ∈ {ℝ,
ℂ}) |
| 11 | | reopn 45285 |
. . . . . . 7
⊢ ℝ
∈ (topGen‘ran (,)) |
| 12 | | tgioo4 24749 |
. . . . . . 7
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
| 13 | 11, 12 | eleqtri 2833 |
. . . . . 6
⊢ ℝ
∈ ((TopOpen‘ℂfld) ↾t
ℝ) |
| 14 | 13 | a1i 11 |
. . . . 5
⊢ (𝜑 → ℝ ∈
((TopOpen‘ℂfld) ↾t
ℝ)) |
| 15 | | etransclem47.p |
. . . . . 6
⊢ (𝜑 → 𝑃 ∈ ℙ) |
| 16 | | prmnn 16698 |
. . . . . 6
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
| 17 | 15, 16 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ ℕ) |
| 18 | | etransclem47.f |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) |
| 19 | | etransclem47.l |
. . . . 5
⊢ 𝐿 = Σ𝑗 ∈ (0...𝑀)(((𝐴‘𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹‘𝑥)) d𝑥) |
| 20 | | eqid 2736 |
. . . . 5
⊢ ((𝑀 · 𝑃) + (𝑃 − 1)) = ((𝑀 · 𝑃) + (𝑃 − 1)) |
| 21 | | fveq2 6881 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → (((ℝ D𝑛
𝐹)‘𝑖)‘𝑦) = (((ℝ D𝑛 𝐹)‘𝑖)‘𝑥)) |
| 22 | 21 | sumeq2sdv 15724 |
. . . . . 6
⊢ (𝑦 = 𝑥 → Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ
D𝑛 𝐹)‘𝑖)‘𝑦) = Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ
D𝑛 𝐹)‘𝑖)‘𝑥)) |
| 23 | 22 | cbvmptv 5230 |
. . . . 5
⊢ (𝑦 ∈ ℝ ↦
Σ𝑖 ∈
(0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ
D𝑛 𝐹)‘𝑖)‘𝑦)) = (𝑥 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ
D𝑛 𝐹)‘𝑖)‘𝑥)) |
| 24 | | negeq 11479 |
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → -𝑧 = -𝑥) |
| 25 | 24 | oveq2d 7426 |
. . . . . . . 8
⊢ (𝑧 = 𝑥 → (e↑𝑐-𝑧) =
(e↑𝑐-𝑥)) |
| 26 | | fveq2 6881 |
. . . . . . . 8
⊢ (𝑧 = 𝑥 → ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ
D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑧) = ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ
D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑥)) |
| 27 | 25, 26 | oveq12d 7428 |
. . . . . . 7
⊢ (𝑧 = 𝑥 → ((e↑𝑐-𝑧) · ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ
D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑧)) = ((e↑𝑐-𝑥) · ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ
D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑥))) |
| 28 | 27 | negeqd 11481 |
. . . . . 6
⊢ (𝑧 = 𝑥 → -((e↑𝑐-𝑧) · ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ
D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑧)) = -((e↑𝑐-𝑥) · ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ
D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑥))) |
| 29 | 28 | cbvmptv 5230 |
. . . . 5
⊢ (𝑧 ∈ (0[,]𝑗) ↦
-((e↑𝑐-𝑧) · ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ
D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑧))) = (𝑥 ∈ (0[,]𝑗) ↦
-((e↑𝑐-𝑥) · ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ
D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑥))) |
| 30 | 3, 4, 5, 6, 8, 10,
14, 17, 18, 19, 20, 23, 29 | etransclem46 46276 |
. . . 4
⊢ (𝜑 → (𝐿 / (!‘(𝑃 − 1))) = (-Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 −
1)))) |
| 31 | | fzfid 13996 |
. . . . . . . 8
⊢ (𝜑 → (0...𝑀) ∈ Fin) |
| 32 | | fzfid 13996 |
. . . . . . . 8
⊢ (𝜑 → (0...((𝑀 · 𝑃) + (𝑃 − 1))) ∈ Fin) |
| 33 | | xpfi 9335 |
. . . . . . . 8
⊢
(((0...𝑀) ∈ Fin
∧ (0...((𝑀 ·
𝑃) + (𝑃 − 1))) ∈ Fin) → ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∈ Fin) |
| 34 | 31, 32, 33 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∈ Fin) |
| 35 | 3 | eldifad 3943 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑄 ∈
(Poly‘ℤ)) |
| 36 | | 0zd 12605 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 ∈
ℤ) |
| 37 | 5 | coef2 26193 |
. . . . . . . . . . . 12
⊢ ((𝑄 ∈ (Poly‘ℤ)
∧ 0 ∈ ℤ) → 𝐴:ℕ0⟶ℤ) |
| 38 | 35, 36, 37 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴:ℕ0⟶ℤ) |
| 39 | 38 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → 𝐴:ℕ0⟶ℤ) |
| 40 | | xp1st 8025 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → (1st
‘𝑘) ∈ (0...𝑀)) |
| 41 | | elfznn0 13642 |
. . . . . . . . . . . 12
⊢
((1st ‘𝑘) ∈ (0...𝑀) → (1st ‘𝑘) ∈
ℕ0) |
| 42 | 40, 41 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → (1st
‘𝑘) ∈
ℕ0) |
| 43 | 42 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (1st
‘𝑘) ∈
ℕ0) |
| 44 | 39, 43 | ffvelcdmd 7080 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (𝐴‘(1st ‘𝑘)) ∈
ℤ) |
| 45 | 44 | zcnd 12703 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (𝐴‘(1st ‘𝑘)) ∈
ℂ) |
| 46 | 9 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → ℝ ∈
{ℝ, ℂ}) |
| 47 | 13 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → ℝ ∈
((TopOpen‘ℂfld) ↾t
ℝ)) |
| 48 | 17 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → 𝑃 ∈ ℕ) |
| 49 | | dgrcl 26195 |
. . . . . . . . . . . . 13
⊢ (𝑄 ∈ (Poly‘ℤ)
→ (deg‘𝑄) ∈
ℕ0) |
| 50 | 35, 49 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (deg‘𝑄) ∈
ℕ0) |
| 51 | 6, 50 | eqeltrid 2839 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
| 52 | 51 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → 𝑀 ∈
ℕ0) |
| 53 | | xp2nd 8026 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → (2nd
‘𝑘) ∈
(0...((𝑀 · 𝑃) + (𝑃 − 1)))) |
| 54 | | elfznn0 13642 |
. . . . . . . . . . . 12
⊢
((2nd ‘𝑘) ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1))) → (2nd
‘𝑘) ∈
ℕ0) |
| 55 | 53, 54 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → (2nd
‘𝑘) ∈
ℕ0) |
| 56 | 55 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (2nd
‘𝑘) ∈
ℕ0) |
| 57 | 46, 47, 48, 52, 18, 56 | etransclem33 46263 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → ((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘)):ℝ⟶ℂ) |
| 58 | 43 | nn0red 12568 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (1st
‘𝑘) ∈
ℝ) |
| 59 | 57, 58 | ffvelcdmd 7080 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘)) ∈
ℂ) |
| 60 | 45, 59 | mulcld 11260 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → ((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) ∈
ℂ) |
| 61 | 34, 60 | fsumcl 15754 |
. . . . . 6
⊢ (𝜑 → Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) ∈
ℂ) |
| 62 | | nnm1nn0 12547 |
. . . . . . . . 9
⊢ (𝑃 ∈ ℕ → (𝑃 − 1) ∈
ℕ0) |
| 63 | 17, 62 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑃 − 1) ∈
ℕ0) |
| 64 | 63 | faccld 14307 |
. . . . . . 7
⊢ (𝜑 → (!‘(𝑃 − 1)) ∈
ℕ) |
| 65 | 64 | nncnd 12261 |
. . . . . 6
⊢ (𝜑 → (!‘(𝑃 − 1)) ∈
ℂ) |
| 66 | 64 | nnne0d 12295 |
. . . . . 6
⊢ (𝜑 → (!‘(𝑃 − 1)) ≠
0) |
| 67 | 61, 65, 66 | divnegd 12035 |
. . . . 5
⊢ (𝜑 → -(Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 − 1))) =
(-Σ𝑘 ∈
((0...𝑀) ×
(0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 −
1)))) |
| 68 | 67 | eqcomd 2742 |
. . . 4
⊢ (𝜑 → (-Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 − 1))) =
-(Σ𝑘 ∈
((0...𝑀) ×
(0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 −
1)))) |
| 69 | 2, 30, 68 | 3eqtrd 2775 |
. . 3
⊢ (𝜑 → 𝐾 = -(Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 −
1)))) |
| 70 | | eqid 2736 |
. . . . 5
⊢
(Σ𝑘 ∈
((0...𝑀) ×
(0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 − 1))) =
(Σ𝑘 ∈
((0...𝑀) ×
(0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 −
1))) |
| 71 | 17, 51, 18, 38, 70 | etransclem45 46275 |
. . . 4
⊢ (𝜑 → (Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 − 1)))
∈ ℤ) |
| 72 | 71 | znegcld 12704 |
. . 3
⊢ (𝜑 → -(Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 − 1)))
∈ ℤ) |
| 73 | 69, 72 | eqeltrd 2835 |
. 2
⊢ (𝜑 → 𝐾 ∈ ℤ) |
| 74 | 1, 30 | eqtrid 2783 |
. . 3
⊢ (𝜑 → 𝐾 = (-Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 −
1)))) |
| 75 | 61, 65, 66 | divcld 12022 |
. . . . 5
⊢ (𝜑 → (Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 − 1)))
∈ ℂ) |
| 76 | | etransclem47.a0 |
. . . . . 6
⊢ (𝜑 → (𝐴‘0) ≠ 0) |
| 77 | | etransclem47.ap |
. . . . . 6
⊢ (𝜑 → (abs‘(𝐴‘0)) < 𝑃) |
| 78 | | etransclem47.mp |
. . . . . 6
⊢ (𝜑 → (!‘𝑀) < 𝑃) |
| 79 | 38, 76, 51, 15, 77, 78, 18, 70 | etransclem44 46274 |
. . . . 5
⊢ (𝜑 → (Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 − 1)))
≠ 0) |
| 80 | 75, 79 | negne0d 11597 |
. . . 4
⊢ (𝜑 → -(Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 − 1)))
≠ 0) |
| 81 | 68, 80 | eqnetrd 3000 |
. . 3
⊢ (𝜑 → (-Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 − 1)))
≠ 0) |
| 82 | 74, 81 | eqnetrd 3000 |
. 2
⊢ (𝜑 → 𝐾 ≠ 0) |
| 83 | | eldifsni 4771 |
. . . . . 6
⊢ (𝑄 ∈ ((Poly‘ℤ)
∖ {0𝑝}) → 𝑄 ≠
0𝑝) |
| 84 | 3, 83 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑄 ≠
0𝑝) |
| 85 | | ere 16110 |
. . . . . . 7
⊢ e ∈
ℝ |
| 86 | 85 | recni 11254 |
. . . . . 6
⊢ e ∈
ℂ |
| 87 | 86 | a1i 11 |
. . . . 5
⊢ (𝜑 → e ∈
ℂ) |
| 88 | | dgrnznn 26209 |
. . . . 5
⊢ (((𝑄 ∈ (Poly‘ℤ)
∧ 𝑄 ≠
0𝑝) ∧ (e ∈ ℂ ∧ (𝑄‘e) = 0)) → (deg‘𝑄) ∈
ℕ) |
| 89 | 35, 84, 87, 4, 88 | syl22anc 838 |
. . . 4
⊢ (𝜑 → (deg‘𝑄) ∈
ℕ) |
| 90 | 6, 89 | eqeltrid 2839 |
. . 3
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 91 | | etransclem47.9 |
. . 3
⊢ (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴‘𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) / (!‘(𝑃 − 1)))) < 1) |
| 92 | 38, 19, 1, 17, 90, 18, 91 | etransclem23 46253 |
. 2
⊢ (𝜑 → (abs‘𝐾) < 1) |
| 93 | | neeq1 2995 |
. . . 4
⊢ (𝑘 = 𝐾 → (𝑘 ≠ 0 ↔ 𝐾 ≠ 0)) |
| 94 | | fveq2 6881 |
. . . . 5
⊢ (𝑘 = 𝐾 → (abs‘𝑘) = (abs‘𝐾)) |
| 95 | 94 | breq1d 5134 |
. . . 4
⊢ (𝑘 = 𝐾 → ((abs‘𝑘) < 1 ↔ (abs‘𝐾) < 1)) |
| 96 | 93, 95 | anbi12d 632 |
. . 3
⊢ (𝑘 = 𝐾 → ((𝑘 ≠ 0 ∧ (abs‘𝑘) < 1) ↔ (𝐾 ≠ 0 ∧ (abs‘𝐾) < 1))) |
| 97 | 96 | rspcev 3606 |
. 2
⊢ ((𝐾 ∈ ℤ ∧ (𝐾 ≠ 0 ∧ (abs‘𝐾) < 1)) → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1)) |
| 98 | 73, 82, 92, 97 | syl12anc 836 |
1
⊢ (𝜑 → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1)) |