Step | Hyp | Ref
| Expression |
1 | | etransclem47.k |
. . . . 5
⊢ 𝐾 = (𝐿 / (!‘(𝑃 − 1))) |
2 | 1 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝐾 = (𝐿 / (!‘(𝑃 − 1)))) |
3 | | etransclem47.q |
. . . . 5
⊢ (𝜑 → 𝑄 ∈ ((Poly‘ℤ) ∖
{0𝑝})) |
4 | | etransclem47.qe0 |
. . . . 5
⊢ (𝜑 → (𝑄‘e) = 0) |
5 | | etransclem47.a |
. . . . 5
⊢ 𝐴 = (coeff‘𝑄) |
6 | | etransclem47.m |
. . . . 5
⊢ 𝑀 = (deg‘𝑄) |
7 | | ssid 3943 |
. . . . . 6
⊢ ℝ
⊆ ℝ |
8 | 7 | a1i 11 |
. . . . 5
⊢ (𝜑 → ℝ ⊆
ℝ) |
9 | | reelprrecn 10963 |
. . . . . 6
⊢ ℝ
∈ {ℝ, ℂ} |
10 | 9 | a1i 11 |
. . . . 5
⊢ (𝜑 → ℝ ∈ {ℝ,
ℂ}) |
11 | | reopn 42828 |
. . . . . . 7
⊢ ℝ
∈ (topGen‘ran (,)) |
12 | | eqid 2738 |
. . . . . . . 8
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
13 | 12 | tgioo2 23966 |
. . . . . . 7
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
14 | 11, 13 | eleqtri 2837 |
. . . . . 6
⊢ ℝ
∈ ((TopOpen‘ℂfld) ↾t
ℝ) |
15 | 14 | a1i 11 |
. . . . 5
⊢ (𝜑 → ℝ ∈
((TopOpen‘ℂfld) ↾t
ℝ)) |
16 | | etransclem47.p |
. . . . . 6
⊢ (𝜑 → 𝑃 ∈ ℙ) |
17 | | prmnn 16379 |
. . . . . 6
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
18 | 16, 17 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ ℕ) |
19 | | etransclem47.f |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) |
20 | | etransclem47.l |
. . . . 5
⊢ 𝐿 = Σ𝑗 ∈ (0...𝑀)(((𝐴‘𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹‘𝑥)) d𝑥) |
21 | | eqid 2738 |
. . . . 5
⊢ ((𝑀 · 𝑃) + (𝑃 − 1)) = ((𝑀 · 𝑃) + (𝑃 − 1)) |
22 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → (((ℝ D𝑛
𝐹)‘𝑖)‘𝑦) = (((ℝ D𝑛 𝐹)‘𝑖)‘𝑥)) |
23 | 22 | sumeq2sdv 15416 |
. . . . . 6
⊢ (𝑦 = 𝑥 → Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ
D𝑛 𝐹)‘𝑖)‘𝑦) = Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ
D𝑛 𝐹)‘𝑖)‘𝑥)) |
24 | 23 | cbvmptv 5187 |
. . . . 5
⊢ (𝑦 ∈ ℝ ↦
Σ𝑖 ∈
(0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ
D𝑛 𝐹)‘𝑖)‘𝑦)) = (𝑥 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ
D𝑛 𝐹)‘𝑖)‘𝑥)) |
25 | | negeq 11213 |
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → -𝑧 = -𝑥) |
26 | 25 | oveq2d 7291 |
. . . . . . . 8
⊢ (𝑧 = 𝑥 → (e↑𝑐-𝑧) =
(e↑𝑐-𝑥)) |
27 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑧 = 𝑥 → ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ
D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑧) = ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ
D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑥)) |
28 | 26, 27 | oveq12d 7293 |
. . . . . . 7
⊢ (𝑧 = 𝑥 → ((e↑𝑐-𝑧) · ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ
D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑧)) = ((e↑𝑐-𝑥) · ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ
D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑥))) |
29 | 28 | negeqd 11215 |
. . . . . 6
⊢ (𝑧 = 𝑥 → -((e↑𝑐-𝑧) · ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ
D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑧)) = -((e↑𝑐-𝑥) · ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ
D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑥))) |
30 | 29 | cbvmptv 5187 |
. . . . 5
⊢ (𝑧 ∈ (0[,]𝑗) ↦
-((e↑𝑐-𝑧) · ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ
D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑧))) = (𝑥 ∈ (0[,]𝑗) ↦
-((e↑𝑐-𝑥) · ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ
D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑥))) |
31 | 3, 4, 5, 6, 8, 10,
15, 18, 19, 20, 21, 24, 30 | etransclem46 43821 |
. . . 4
⊢ (𝜑 → (𝐿 / (!‘(𝑃 − 1))) = (-Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 −
1)))) |
32 | | fzfid 13693 |
. . . . . . . 8
⊢ (𝜑 → (0...𝑀) ∈ Fin) |
33 | | fzfid 13693 |
. . . . . . . 8
⊢ (𝜑 → (0...((𝑀 · 𝑃) + (𝑃 − 1))) ∈ Fin) |
34 | | xpfi 9085 |
. . . . . . . 8
⊢
(((0...𝑀) ∈ Fin
∧ (0...((𝑀 ·
𝑃) + (𝑃 − 1))) ∈ Fin) → ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∈ Fin) |
35 | 32, 33, 34 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∈ Fin) |
36 | 3 | eldifad 3899 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑄 ∈
(Poly‘ℤ)) |
37 | | 0zd 12331 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 ∈
ℤ) |
38 | 5 | coef2 25392 |
. . . . . . . . . . . 12
⊢ ((𝑄 ∈ (Poly‘ℤ)
∧ 0 ∈ ℤ) → 𝐴:ℕ0⟶ℤ) |
39 | 36, 37, 38 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴:ℕ0⟶ℤ) |
40 | 39 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → 𝐴:ℕ0⟶ℤ) |
41 | | xp1st 7863 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → (1st
‘𝑘) ∈ (0...𝑀)) |
42 | | elfznn0 13349 |
. . . . . . . . . . . 12
⊢
((1st ‘𝑘) ∈ (0...𝑀) → (1st ‘𝑘) ∈
ℕ0) |
43 | 41, 42 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → (1st
‘𝑘) ∈
ℕ0) |
44 | 43 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (1st
‘𝑘) ∈
ℕ0) |
45 | 40, 44 | ffvelrnd 6962 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (𝐴‘(1st ‘𝑘)) ∈
ℤ) |
46 | 45 | zcnd 12427 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (𝐴‘(1st ‘𝑘)) ∈
ℂ) |
47 | 9 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → ℝ ∈
{ℝ, ℂ}) |
48 | 14 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → ℝ ∈
((TopOpen‘ℂfld) ↾t
ℝ)) |
49 | 18 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → 𝑃 ∈ ℕ) |
50 | | dgrcl 25394 |
. . . . . . . . . . . . 13
⊢ (𝑄 ∈ (Poly‘ℤ)
→ (deg‘𝑄) ∈
ℕ0) |
51 | 36, 50 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (deg‘𝑄) ∈
ℕ0) |
52 | 6, 51 | eqeltrid 2843 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
53 | 52 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → 𝑀 ∈
ℕ0) |
54 | | xp2nd 7864 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → (2nd
‘𝑘) ∈
(0...((𝑀 · 𝑃) + (𝑃 − 1)))) |
55 | | elfznn0 13349 |
. . . . . . . . . . . 12
⊢
((2nd ‘𝑘) ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1))) → (2nd
‘𝑘) ∈
ℕ0) |
56 | 54, 55 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → (2nd
‘𝑘) ∈
ℕ0) |
57 | 56 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (2nd
‘𝑘) ∈
ℕ0) |
58 | 47, 48, 49, 53, 19, 57 | etransclem33 43808 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → ((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘)):ℝ⟶ℂ) |
59 | 44 | nn0red 12294 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (1st
‘𝑘) ∈
ℝ) |
60 | 58, 59 | ffvelrnd 6962 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘)) ∈
ℂ) |
61 | 46, 60 | mulcld 10995 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → ((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) ∈
ℂ) |
62 | 35, 61 | fsumcl 15445 |
. . . . . 6
⊢ (𝜑 → Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) ∈
ℂ) |
63 | | nnm1nn0 12274 |
. . . . . . . . 9
⊢ (𝑃 ∈ ℕ → (𝑃 − 1) ∈
ℕ0) |
64 | 18, 63 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑃 − 1) ∈
ℕ0) |
65 | 64 | faccld 13998 |
. . . . . . 7
⊢ (𝜑 → (!‘(𝑃 − 1)) ∈
ℕ) |
66 | 65 | nncnd 11989 |
. . . . . 6
⊢ (𝜑 → (!‘(𝑃 − 1)) ∈
ℂ) |
67 | 65 | nnne0d 12023 |
. . . . . 6
⊢ (𝜑 → (!‘(𝑃 − 1)) ≠
0) |
68 | 62, 66, 67 | divnegd 11764 |
. . . . 5
⊢ (𝜑 → -(Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 − 1))) =
(-Σ𝑘 ∈
((0...𝑀) ×
(0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 −
1)))) |
69 | 68 | eqcomd 2744 |
. . . 4
⊢ (𝜑 → (-Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 − 1))) =
-(Σ𝑘 ∈
((0...𝑀) ×
(0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 −
1)))) |
70 | 2, 31, 69 | 3eqtrd 2782 |
. . 3
⊢ (𝜑 → 𝐾 = -(Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 −
1)))) |
71 | | eqid 2738 |
. . . . 5
⊢
(Σ𝑘 ∈
((0...𝑀) ×
(0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 − 1))) =
(Σ𝑘 ∈
((0...𝑀) ×
(0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 −
1))) |
72 | 18, 52, 19, 39, 71 | etransclem45 43820 |
. . . 4
⊢ (𝜑 → (Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 − 1)))
∈ ℤ) |
73 | 72 | znegcld 12428 |
. . 3
⊢ (𝜑 → -(Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 − 1)))
∈ ℤ) |
74 | 70, 73 | eqeltrd 2839 |
. 2
⊢ (𝜑 → 𝐾 ∈ ℤ) |
75 | 1, 31 | eqtrid 2790 |
. . 3
⊢ (𝜑 → 𝐾 = (-Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 −
1)))) |
76 | 62, 66, 67 | divcld 11751 |
. . . . 5
⊢ (𝜑 → (Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 − 1)))
∈ ℂ) |
77 | | etransclem47.a0 |
. . . . . 6
⊢ (𝜑 → (𝐴‘0) ≠ 0) |
78 | | etransclem47.ap |
. . . . . 6
⊢ (𝜑 → (abs‘(𝐴‘0)) < 𝑃) |
79 | | etransclem47.mp |
. . . . . 6
⊢ (𝜑 → (!‘𝑀) < 𝑃) |
80 | 39, 77, 52, 16, 78, 79, 19, 71 | etransclem44 43819 |
. . . . 5
⊢ (𝜑 → (Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 − 1)))
≠ 0) |
81 | 76, 80 | negne0d 11330 |
. . . 4
⊢ (𝜑 → -(Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 − 1)))
≠ 0) |
82 | 69, 81 | eqnetrd 3011 |
. . 3
⊢ (𝜑 → (-Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st ‘𝑘)) · (((ℝ
D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st
‘𝑘))) /
(!‘(𝑃 − 1)))
≠ 0) |
83 | 75, 82 | eqnetrd 3011 |
. 2
⊢ (𝜑 → 𝐾 ≠ 0) |
84 | | eldifsni 4723 |
. . . . . 6
⊢ (𝑄 ∈ ((Poly‘ℤ)
∖ {0𝑝}) → 𝑄 ≠
0𝑝) |
85 | 3, 84 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑄 ≠
0𝑝) |
86 | | ere 15798 |
. . . . . . 7
⊢ e ∈
ℝ |
87 | 86 | recni 10989 |
. . . . . 6
⊢ e ∈
ℂ |
88 | 87 | a1i 11 |
. . . . 5
⊢ (𝜑 → e ∈
ℂ) |
89 | | dgrnznn 25408 |
. . . . 5
⊢ (((𝑄 ∈ (Poly‘ℤ)
∧ 𝑄 ≠
0𝑝) ∧ (e ∈ ℂ ∧ (𝑄‘e) = 0)) → (deg‘𝑄) ∈
ℕ) |
90 | 36, 85, 88, 4, 89 | syl22anc 836 |
. . . 4
⊢ (𝜑 → (deg‘𝑄) ∈
ℕ) |
91 | 6, 90 | eqeltrid 2843 |
. . 3
⊢ (𝜑 → 𝑀 ∈ ℕ) |
92 | | etransclem47.9 |
. . 3
⊢ (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴‘𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) / (!‘(𝑃 − 1)))) < 1) |
93 | 39, 20, 1, 18, 91, 19, 92 | etransclem23 43798 |
. 2
⊢ (𝜑 → (abs‘𝐾) < 1) |
94 | | neeq1 3006 |
. . . 4
⊢ (𝑘 = 𝐾 → (𝑘 ≠ 0 ↔ 𝐾 ≠ 0)) |
95 | | fveq2 6774 |
. . . . 5
⊢ (𝑘 = 𝐾 → (abs‘𝑘) = (abs‘𝐾)) |
96 | 95 | breq1d 5084 |
. . . 4
⊢ (𝑘 = 𝐾 → ((abs‘𝑘) < 1 ↔ (abs‘𝐾) < 1)) |
97 | 94, 96 | anbi12d 631 |
. . 3
⊢ (𝑘 = 𝐾 → ((𝑘 ≠ 0 ∧ (abs‘𝑘) < 1) ↔ (𝐾 ≠ 0 ∧ (abs‘𝐾) < 1))) |
98 | 97 | rspcev 3561 |
. 2
⊢ ((𝐾 ∈ ℤ ∧ (𝐾 ≠ 0 ∧ (abs‘𝐾) < 1)) → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1)) |
99 | 74, 83, 93, 98 | syl12anc 834 |
1
⊢ (𝜑 → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1)) |