Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem47 Structured version   Visualization version   GIF version

Theorem etransclem47 46246
Description: e is transcendental. Section *5 of [Juillerat] p. 11 can be used as a reference for this proof. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem47.q (𝜑𝑄 ∈ ((Poly‘ℤ) ∖ {0𝑝}))
etransclem47.qe0 (𝜑 → (𝑄‘e) = 0)
etransclem47.a 𝐴 = (coeff‘𝑄)
etransclem47.a0 (𝜑 → (𝐴‘0) ≠ 0)
etransclem47.m 𝑀 = (deg‘𝑄)
etransclem47.p (𝜑𝑃 ∈ ℙ)
etransclem47.ap (𝜑 → (abs‘(𝐴‘0)) < 𝑃)
etransclem47.mp (𝜑 → (!‘𝑀) < 𝑃)
etransclem47.9 (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) / (!‘(𝑃 − 1)))) < 1)
etransclem47.f 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
etransclem47.l 𝐿 = Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)
etransclem47.k 𝐾 = (𝐿 / (!‘(𝑃 − 1)))
Assertion
Ref Expression
etransclem47 (𝜑 → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1))
Distinct variable groups:   𝐴,𝑗,𝑘   𝑗,𝐹,𝑘,𝑥   𝑘,𝐾   𝑗,𝑀,𝑘,𝑥   𝑃,𝑗,𝑘,𝑥   𝑄,𝑗   𝜑,𝑗,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝑄(𝑥,𝑘)   𝐾(𝑥,𝑗)   𝐿(𝑥,𝑗,𝑘)

Proof of Theorem etransclem47
Dummy variables 𝑖 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem47.k . . . . 5 𝐾 = (𝐿 / (!‘(𝑃 − 1)))
21a1i 11 . . . 4 (𝜑𝐾 = (𝐿 / (!‘(𝑃 − 1))))
3 etransclem47.q . . . . 5 (𝜑𝑄 ∈ ((Poly‘ℤ) ∖ {0𝑝}))
4 etransclem47.qe0 . . . . 5 (𝜑 → (𝑄‘e) = 0)
5 etransclem47.a . . . . 5 𝐴 = (coeff‘𝑄)
6 etransclem47.m . . . . 5 𝑀 = (deg‘𝑄)
7 ssid 3979 . . . . . 6 ℝ ⊆ ℝ
87a1i 11 . . . . 5 (𝜑 → ℝ ⊆ ℝ)
9 reelprrecn 11214 . . . . . 6 ℝ ∈ {ℝ, ℂ}
109a1i 11 . . . . 5 (𝜑 → ℝ ∈ {ℝ, ℂ})
11 reopn 45252 . . . . . . 7 ℝ ∈ (topGen‘ran (,))
12 tgioo4 24731 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
1311, 12eleqtri 2831 . . . . . 6 ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ)
1413a1i 11 . . . . 5 (𝜑 → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ))
15 etransclem47.p . . . . . 6 (𝜑𝑃 ∈ ℙ)
16 prmnn 16680 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
1715, 16syl 17 . . . . 5 (𝜑𝑃 ∈ ℕ)
18 etransclem47.f . . . . 5 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
19 etransclem47.l . . . . 5 𝐿 = Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)
20 eqid 2734 . . . . 5 ((𝑀 · 𝑃) + (𝑃 − 1)) = ((𝑀 · 𝑃) + (𝑃 − 1))
21 fveq2 6873 . . . . . . 7 (𝑦 = 𝑥 → (((ℝ D𝑛 𝐹)‘𝑖)‘𝑦) = (((ℝ D𝑛 𝐹)‘𝑖)‘𝑥))
2221sumeq2sdv 15708 . . . . . 6 (𝑦 = 𝑥 → Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦) = Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑥))
2322cbvmptv 5223 . . . . 5 (𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦)) = (𝑥 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑥))
24 negeq 11467 . . . . . . . . 9 (𝑧 = 𝑥 → -𝑧 = -𝑥)
2524oveq2d 7416 . . . . . . . 8 (𝑧 = 𝑥 → (e↑𝑐-𝑧) = (e↑𝑐-𝑥))
26 fveq2 6873 . . . . . . . 8 (𝑧 = 𝑥 → ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑧) = ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑥))
2725, 26oveq12d 7418 . . . . . . 7 (𝑧 = 𝑥 → ((e↑𝑐-𝑧) · ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑧)) = ((e↑𝑐-𝑥) · ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑥)))
2827negeqd 11469 . . . . . 6 (𝑧 = 𝑥 → -((e↑𝑐-𝑧) · ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑧)) = -((e↑𝑐-𝑥) · ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑥)))
2928cbvmptv 5223 . . . . 5 (𝑧 ∈ (0[,]𝑗) ↦ -((e↑𝑐-𝑧) · ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑧))) = (𝑥 ∈ (0[,]𝑗) ↦ -((e↑𝑐-𝑥) · ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑥)))
303, 4, 5, 6, 8, 10, 14, 17, 18, 19, 20, 23, 29etransclem46 46245 . . . 4 (𝜑 → (𝐿 / (!‘(𝑃 − 1))) = (-Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))))
31 fzfid 13981 . . . . . . . 8 (𝜑 → (0...𝑀) ∈ Fin)
32 fzfid 13981 . . . . . . . 8 (𝜑 → (0...((𝑀 · 𝑃) + (𝑃 − 1))) ∈ Fin)
33 xpfi 9325 . . . . . . . 8 (((0...𝑀) ∈ Fin ∧ (0...((𝑀 · 𝑃) + (𝑃 − 1))) ∈ Fin) → ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∈ Fin)
3431, 32, 33syl2anc 584 . . . . . . 7 (𝜑 → ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∈ Fin)
353eldifad 3936 . . . . . . . . . . . 12 (𝜑𝑄 ∈ (Poly‘ℤ))
36 0zd 12593 . . . . . . . . . . . 12 (𝜑 → 0 ∈ ℤ)
375coef2 26175 . . . . . . . . . . . 12 ((𝑄 ∈ (Poly‘ℤ) ∧ 0 ∈ ℤ) → 𝐴:ℕ0⟶ℤ)
3835, 36, 37syl2anc 584 . . . . . . . . . . 11 (𝜑𝐴:ℕ0⟶ℤ)
3938adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → 𝐴:ℕ0⟶ℤ)
40 xp1st 8015 . . . . . . . . . . . 12 (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → (1st𝑘) ∈ (0...𝑀))
41 elfznn0 13627 . . . . . . . . . . . 12 ((1st𝑘) ∈ (0...𝑀) → (1st𝑘) ∈ ℕ0)
4240, 41syl 17 . . . . . . . . . . 11 (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → (1st𝑘) ∈ ℕ0)
4342adantl 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (1st𝑘) ∈ ℕ0)
4439, 43ffvelcdmd 7072 . . . . . . . . 9 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (𝐴‘(1st𝑘)) ∈ ℤ)
4544zcnd 12691 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (𝐴‘(1st𝑘)) ∈ ℂ)
469a1i 11 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → ℝ ∈ {ℝ, ℂ})
4713a1i 11 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ))
4817adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → 𝑃 ∈ ℕ)
49 dgrcl 26177 . . . . . . . . . . . . 13 (𝑄 ∈ (Poly‘ℤ) → (deg‘𝑄) ∈ ℕ0)
5035, 49syl 17 . . . . . . . . . . . 12 (𝜑 → (deg‘𝑄) ∈ ℕ0)
516, 50eqeltrid 2837 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ0)
5251adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → 𝑀 ∈ ℕ0)
53 xp2nd 8016 . . . . . . . . . . . 12 (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → (2nd𝑘) ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1))))
54 elfznn0 13627 . . . . . . . . . . . 12 ((2nd𝑘) ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1))) → (2nd𝑘) ∈ ℕ0)
5553, 54syl 17 . . . . . . . . . . 11 (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → (2nd𝑘) ∈ ℕ0)
5655adantl 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (2nd𝑘) ∈ ℕ0)
5746, 47, 48, 52, 18, 56etransclem33 46232 . . . . . . . . 9 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → ((ℝ D𝑛 𝐹)‘(2nd𝑘)):ℝ⟶ℂ)
5843nn0red 12556 . . . . . . . . 9 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (1st𝑘) ∈ ℝ)
5957, 58ffvelcdmd 7072 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) ∈ ℂ)
6045, 59mulcld 11248 . . . . . . 7 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → ((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) ∈ ℂ)
6134, 60fsumcl 15738 . . . . . 6 (𝜑 → Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) ∈ ℂ)
62 nnm1nn0 12535 . . . . . . . . 9 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
6317, 62syl 17 . . . . . . . 8 (𝜑 → (𝑃 − 1) ∈ ℕ0)
6463faccld 14292 . . . . . . 7 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ)
6564nncnd 12249 . . . . . 6 (𝜑 → (!‘(𝑃 − 1)) ∈ ℂ)
6664nnne0d 12283 . . . . . 6 (𝜑 → (!‘(𝑃 − 1)) ≠ 0)
6761, 65, 66divnegd 12023 . . . . 5 (𝜑 → -(Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) = (-Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))))
6867eqcomd 2740 . . . 4 (𝜑 → (-Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) = -(Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))))
692, 30, 683eqtrd 2773 . . 3 (𝜑𝐾 = -(Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))))
70 eqid 2734 . . . . 5 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) = (Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1)))
7117, 51, 18, 38, 70etransclem45 46244 . . . 4 (𝜑 → (Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) ∈ ℤ)
7271znegcld 12692 . . 3 (𝜑 → -(Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) ∈ ℤ)
7369, 72eqeltrd 2833 . 2 (𝜑𝐾 ∈ ℤ)
741, 30eqtrid 2781 . . 3 (𝜑𝐾 = (-Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))))
7561, 65, 66divcld 12010 . . . . 5 (𝜑 → (Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) ∈ ℂ)
76 etransclem47.a0 . . . . . 6 (𝜑 → (𝐴‘0) ≠ 0)
77 etransclem47.ap . . . . . 6 (𝜑 → (abs‘(𝐴‘0)) < 𝑃)
78 etransclem47.mp . . . . . 6 (𝜑 → (!‘𝑀) < 𝑃)
7938, 76, 51, 15, 77, 78, 18, 70etransclem44 46243 . . . . 5 (𝜑 → (Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) ≠ 0)
8075, 79negne0d 11585 . . . 4 (𝜑 → -(Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) ≠ 0)
8168, 80eqnetrd 2998 . . 3 (𝜑 → (-Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) ≠ 0)
8274, 81eqnetrd 2998 . 2 (𝜑𝐾 ≠ 0)
83 eldifsni 4764 . . . . . 6 (𝑄 ∈ ((Poly‘ℤ) ∖ {0𝑝}) → 𝑄 ≠ 0𝑝)
843, 83syl 17 . . . . 5 (𝜑𝑄 ≠ 0𝑝)
85 ere 16094 . . . . . . 7 e ∈ ℝ
8685recni 11242 . . . . . 6 e ∈ ℂ
8786a1i 11 . . . . 5 (𝜑 → e ∈ ℂ)
88 dgrnznn 26191 . . . . 5 (((𝑄 ∈ (Poly‘ℤ) ∧ 𝑄 ≠ 0𝑝) ∧ (e ∈ ℂ ∧ (𝑄‘e) = 0)) → (deg‘𝑄) ∈ ℕ)
8935, 84, 87, 4, 88syl22anc 838 . . . 4 (𝜑 → (deg‘𝑄) ∈ ℕ)
906, 89eqeltrid 2837 . . 3 (𝜑𝑀 ∈ ℕ)
91 etransclem47.9 . . 3 (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) / (!‘(𝑃 − 1)))) < 1)
9238, 19, 1, 17, 90, 18, 91etransclem23 46222 . 2 (𝜑 → (abs‘𝐾) < 1)
93 neeq1 2993 . . . 4 (𝑘 = 𝐾 → (𝑘 ≠ 0 ↔ 𝐾 ≠ 0))
94 fveq2 6873 . . . . 5 (𝑘 = 𝐾 → (abs‘𝑘) = (abs‘𝐾))
9594breq1d 5127 . . . 4 (𝑘 = 𝐾 → ((abs‘𝑘) < 1 ↔ (abs‘𝐾) < 1))
9693, 95anbi12d 632 . . 3 (𝑘 = 𝐾 → ((𝑘 ≠ 0 ∧ (abs‘𝑘) < 1) ↔ (𝐾 ≠ 0 ∧ (abs‘𝐾) < 1)))
9796rspcev 3599 . 2 ((𝐾 ∈ ℤ ∧ (𝐾 ≠ 0 ∧ (abs‘𝐾) < 1)) → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1))
9873, 82, 92, 97syl12anc 836 1 (𝜑 → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2931  wrex 3059  cdif 3921  wss 3924  {csn 4599  {cpr 4601   class class class wbr 5117  cmpt 5199   × cxp 5650  ran crn 5653  wf 6524  cfv 6528  (class class class)co 7400  1st c1st 7981  2nd c2nd 7982  Fincfn 8954  cc 11120  cr 11121  0cc0 11122  1c1 11123   + caddc 11125   · cmul 11127   < clt 11262  cmin 11459  -cneg 11460   / cdiv 11887  cn 12233  0cn0 12494  cz 12581  (,)cioo 13354  [,]cicc 13357  ...cfz 13514  cexp 14069  !cfa 14281  abscabs 15242  Σcsu 15691  cprod 15908  eceu 16067  cprime 16677  t crest 17421  TopOpenctopn 17422  topGenctg 17438  fldccnfld 21302  citg 25558  0𝑝c0p 25609   D𝑛 cdvn 25804  Polycply 26128  coeffccoe 26130  degcdgr 26131  𝑐ccxp 26502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-inf2 9648  ax-cc 10442  ax-cnex 11178  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-mulcom 11186  ax-addass 11187  ax-mulass 11188  ax-distr 11189  ax-i2m1 11190  ax-1ne0 11191  ax-1rid 11192  ax-rnegex 11193  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197  ax-pre-ltadd 11198  ax-pre-mulgt0 11199  ax-pre-sup 11200  ax-addf 11201
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-symdif 4226  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-tp 4604  df-op 4606  df-uni 4882  df-int 4921  df-iun 4967  df-iin 4968  df-disj 5085  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-se 5605  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-isom 6537  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-of 7666  df-ofr 7667  df-om 7857  df-1st 7983  df-2nd 7984  df-supp 8155  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-1o 8475  df-2o 8476  df-oadd 8479  df-omul 8480  df-er 8714  df-map 8837  df-pm 8838  df-ixp 8907  df-en 8955  df-dom 8956  df-sdom 8957  df-fin 8958  df-fsupp 9369  df-fi 9418  df-sup 9449  df-inf 9450  df-oi 9517  df-dju 9908  df-card 9946  df-acn 9949  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-sub 11461  df-neg 11462  df-div 11888  df-nn 12234  df-2 12296  df-3 12297  df-4 12298  df-5 12299  df-6 12300  df-7 12301  df-8 12302  df-9 12303  df-n0 12495  df-z 12582  df-dec 12702  df-uz 12846  df-q 12958  df-rp 13002  df-xneg 13121  df-xadd 13122  df-xmul 13123  df-ioo 13358  df-ioc 13359  df-ico 13360  df-icc 13361  df-fz 13515  df-fzo 13662  df-fl 13799  df-mod 13877  df-seq 14010  df-exp 14070  df-fac 14282  df-bc 14311  df-hash 14339  df-shft 15075  df-cj 15107  df-re 15108  df-im 15109  df-sqrt 15243  df-abs 15244  df-limsup 15476  df-clim 15493  df-rlim 15494  df-sum 15692  df-prod 15909  df-ef 16072  df-e 16073  df-sin 16074  df-cos 16075  df-tan 16076  df-pi 16077  df-dvds 16260  df-gcd 16501  df-prm 16678  df-struct 17153  df-sets 17170  df-slot 17188  df-ndx 17200  df-base 17216  df-ress 17239  df-plusg 17271  df-mulr 17272  df-starv 17273  df-sca 17274  df-vsca 17275  df-ip 17276  df-tset 17277  df-ple 17278  df-ds 17280  df-unif 17281  df-hom 17282  df-cco 17283  df-rest 17423  df-topn 17424  df-0g 17442  df-gsum 17443  df-topgen 17444  df-pt 17445  df-prds 17448  df-xrs 17503  df-qtop 17508  df-imas 17509  df-xps 17511  df-mre 17585  df-mrc 17586  df-acs 17588  df-mgm 18605  df-sgrp 18684  df-mnd 18700  df-submnd 18749  df-mulg 19038  df-cntz 19287  df-cmn 19750  df-psmet 21294  df-xmet 21295  df-met 21296  df-bl 21297  df-mopn 21298  df-fbas 21299  df-fg 21300  df-cnfld 21303  df-top 22819  df-topon 22836  df-topsp 22858  df-bases 22871  df-cld 22944  df-ntr 22945  df-cls 22946  df-nei 23023  df-lp 23061  df-perf 23062  df-cn 23152  df-cnp 23153  df-haus 23240  df-cmp 23312  df-tx 23487  df-hmeo 23680  df-fil 23771  df-fm 23863  df-flim 23864  df-flf 23865  df-xms 24246  df-ms 24247  df-tms 24248  df-cncf 24809  df-ovol 25404  df-vol 25405  df-mbf 25559  df-itg1 25560  df-itg2 25561  df-ibl 25562  df-itg 25563  df-0p 25610  df-limc 25806  df-dv 25807  df-dvn 25808  df-ply 26132  df-coe 26134  df-dgr 26135  df-log 26503  df-cxp 26504
This theorem is referenced by:  etransclem48  46247
  Copyright terms: Public domain W3C validator