Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem47 Structured version   Visualization version   GIF version

Theorem etransclem47 46202
Description: e is transcendental. Section *5 of [Juillerat] p. 11 can be used as a reference for this proof. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem47.q (𝜑𝑄 ∈ ((Poly‘ℤ) ∖ {0𝑝}))
etransclem47.qe0 (𝜑 → (𝑄‘e) = 0)
etransclem47.a 𝐴 = (coeff‘𝑄)
etransclem47.a0 (𝜑 → (𝐴‘0) ≠ 0)
etransclem47.m 𝑀 = (deg‘𝑄)
etransclem47.p (𝜑𝑃 ∈ ℙ)
etransclem47.ap (𝜑 → (abs‘(𝐴‘0)) < 𝑃)
etransclem47.mp (𝜑 → (!‘𝑀) < 𝑃)
etransclem47.9 (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) / (!‘(𝑃 − 1)))) < 1)
etransclem47.f 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
etransclem47.l 𝐿 = Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)
etransclem47.k 𝐾 = (𝐿 / (!‘(𝑃 − 1)))
Assertion
Ref Expression
etransclem47 (𝜑 → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1))
Distinct variable groups:   𝐴,𝑗,𝑘   𝑗,𝐹,𝑘,𝑥   𝑘,𝐾   𝑗,𝑀,𝑘,𝑥   𝑃,𝑗,𝑘,𝑥   𝑄,𝑗   𝜑,𝑗,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝑄(𝑥,𝑘)   𝐾(𝑥,𝑗)   𝐿(𝑥,𝑗,𝑘)

Proof of Theorem etransclem47
Dummy variables 𝑖 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem47.k . . . . 5 𝐾 = (𝐿 / (!‘(𝑃 − 1)))
21a1i 11 . . . 4 (𝜑𝐾 = (𝐿 / (!‘(𝑃 − 1))))
3 etransclem47.q . . . . 5 (𝜑𝑄 ∈ ((Poly‘ℤ) ∖ {0𝑝}))
4 etransclem47.qe0 . . . . 5 (𝜑 → (𝑄‘e) = 0)
5 etransclem47.a . . . . 5 𝐴 = (coeff‘𝑄)
6 etransclem47.m . . . . 5 𝑀 = (deg‘𝑄)
7 ssid 4031 . . . . . 6 ℝ ⊆ ℝ
87a1i 11 . . . . 5 (𝜑 → ℝ ⊆ ℝ)
9 reelprrecn 11276 . . . . . 6 ℝ ∈ {ℝ, ℂ}
109a1i 11 . . . . 5 (𝜑 → ℝ ∈ {ℝ, ℂ})
11 reopn 45204 . . . . . . 7 ℝ ∈ (topGen‘ran (,))
12 eqid 2740 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
1312tgioo2 24844 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
1411, 13eleqtri 2842 . . . . . 6 ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ)
1514a1i 11 . . . . 5 (𝜑 → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ))
16 etransclem47.p . . . . . 6 (𝜑𝑃 ∈ ℙ)
17 prmnn 16721 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
1816, 17syl 17 . . . . 5 (𝜑𝑃 ∈ ℕ)
19 etransclem47.f . . . . 5 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
20 etransclem47.l . . . . 5 𝐿 = Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)
21 eqid 2740 . . . . 5 ((𝑀 · 𝑃) + (𝑃 − 1)) = ((𝑀 · 𝑃) + (𝑃 − 1))
22 fveq2 6920 . . . . . . 7 (𝑦 = 𝑥 → (((ℝ D𝑛 𝐹)‘𝑖)‘𝑦) = (((ℝ D𝑛 𝐹)‘𝑖)‘𝑥))
2322sumeq2sdv 15751 . . . . . 6 (𝑦 = 𝑥 → Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦) = Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑥))
2423cbvmptv 5279 . . . . 5 (𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦)) = (𝑥 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑥))
25 negeq 11528 . . . . . . . . 9 (𝑧 = 𝑥 → -𝑧 = -𝑥)
2625oveq2d 7464 . . . . . . . 8 (𝑧 = 𝑥 → (e↑𝑐-𝑧) = (e↑𝑐-𝑥))
27 fveq2 6920 . . . . . . . 8 (𝑧 = 𝑥 → ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑧) = ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑥))
2826, 27oveq12d 7466 . . . . . . 7 (𝑧 = 𝑥 → ((e↑𝑐-𝑧) · ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑧)) = ((e↑𝑐-𝑥) · ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑥)))
2928negeqd 11530 . . . . . 6 (𝑧 = 𝑥 → -((e↑𝑐-𝑧) · ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑧)) = -((e↑𝑐-𝑥) · ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑥)))
3029cbvmptv 5279 . . . . 5 (𝑧 ∈ (0[,]𝑗) ↦ -((e↑𝑐-𝑧) · ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑧))) = (𝑥 ∈ (0[,]𝑗) ↦ -((e↑𝑐-𝑥) · ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑥)))
313, 4, 5, 6, 8, 10, 15, 18, 19, 20, 21, 24, 30etransclem46 46201 . . . 4 (𝜑 → (𝐿 / (!‘(𝑃 − 1))) = (-Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))))
32 fzfid 14024 . . . . . . . 8 (𝜑 → (0...𝑀) ∈ Fin)
33 fzfid 14024 . . . . . . . 8 (𝜑 → (0...((𝑀 · 𝑃) + (𝑃 − 1))) ∈ Fin)
34 xpfi 9386 . . . . . . . 8 (((0...𝑀) ∈ Fin ∧ (0...((𝑀 · 𝑃) + (𝑃 − 1))) ∈ Fin) → ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∈ Fin)
3532, 33, 34syl2anc 583 . . . . . . 7 (𝜑 → ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∈ Fin)
363eldifad 3988 . . . . . . . . . . . 12 (𝜑𝑄 ∈ (Poly‘ℤ))
37 0zd 12651 . . . . . . . . . . . 12 (𝜑 → 0 ∈ ℤ)
385coef2 26290 . . . . . . . . . . . 12 ((𝑄 ∈ (Poly‘ℤ) ∧ 0 ∈ ℤ) → 𝐴:ℕ0⟶ℤ)
3936, 37, 38syl2anc 583 . . . . . . . . . . 11 (𝜑𝐴:ℕ0⟶ℤ)
4039adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → 𝐴:ℕ0⟶ℤ)
41 xp1st 8062 . . . . . . . . . . . 12 (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → (1st𝑘) ∈ (0...𝑀))
42 elfznn0 13677 . . . . . . . . . . . 12 ((1st𝑘) ∈ (0...𝑀) → (1st𝑘) ∈ ℕ0)
4341, 42syl 17 . . . . . . . . . . 11 (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → (1st𝑘) ∈ ℕ0)
4443adantl 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (1st𝑘) ∈ ℕ0)
4540, 44ffvelcdmd 7119 . . . . . . . . 9 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (𝐴‘(1st𝑘)) ∈ ℤ)
4645zcnd 12748 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (𝐴‘(1st𝑘)) ∈ ℂ)
479a1i 11 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → ℝ ∈ {ℝ, ℂ})
4814a1i 11 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ))
4918adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → 𝑃 ∈ ℕ)
50 dgrcl 26292 . . . . . . . . . . . . 13 (𝑄 ∈ (Poly‘ℤ) → (deg‘𝑄) ∈ ℕ0)
5136, 50syl 17 . . . . . . . . . . . 12 (𝜑 → (deg‘𝑄) ∈ ℕ0)
526, 51eqeltrid 2848 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ0)
5352adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → 𝑀 ∈ ℕ0)
54 xp2nd 8063 . . . . . . . . . . . 12 (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → (2nd𝑘) ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1))))
55 elfznn0 13677 . . . . . . . . . . . 12 ((2nd𝑘) ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1))) → (2nd𝑘) ∈ ℕ0)
5654, 55syl 17 . . . . . . . . . . 11 (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → (2nd𝑘) ∈ ℕ0)
5756adantl 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (2nd𝑘) ∈ ℕ0)
5847, 48, 49, 53, 19, 57etransclem33 46188 . . . . . . . . 9 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → ((ℝ D𝑛 𝐹)‘(2nd𝑘)):ℝ⟶ℂ)
5944nn0red 12614 . . . . . . . . 9 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (1st𝑘) ∈ ℝ)
6058, 59ffvelcdmd 7119 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) ∈ ℂ)
6146, 60mulcld 11310 . . . . . . 7 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → ((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) ∈ ℂ)
6235, 61fsumcl 15781 . . . . . 6 (𝜑 → Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) ∈ ℂ)
63 nnm1nn0 12594 . . . . . . . . 9 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
6418, 63syl 17 . . . . . . . 8 (𝜑 → (𝑃 − 1) ∈ ℕ0)
6564faccld 14333 . . . . . . 7 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ)
6665nncnd 12309 . . . . . 6 (𝜑 → (!‘(𝑃 − 1)) ∈ ℂ)
6765nnne0d 12343 . . . . . 6 (𝜑 → (!‘(𝑃 − 1)) ≠ 0)
6862, 66, 67divnegd 12083 . . . . 5 (𝜑 → -(Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) = (-Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))))
6968eqcomd 2746 . . . 4 (𝜑 → (-Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) = -(Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))))
702, 31, 693eqtrd 2784 . . 3 (𝜑𝐾 = -(Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))))
71 eqid 2740 . . . . 5 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) = (Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1)))
7218, 52, 19, 39, 71etransclem45 46200 . . . 4 (𝜑 → (Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) ∈ ℤ)
7372znegcld 12749 . . 3 (𝜑 → -(Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) ∈ ℤ)
7470, 73eqeltrd 2844 . 2 (𝜑𝐾 ∈ ℤ)
751, 31eqtrid 2792 . . 3 (𝜑𝐾 = (-Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))))
7662, 66, 67divcld 12070 . . . . 5 (𝜑 → (Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) ∈ ℂ)
77 etransclem47.a0 . . . . . 6 (𝜑 → (𝐴‘0) ≠ 0)
78 etransclem47.ap . . . . . 6 (𝜑 → (abs‘(𝐴‘0)) < 𝑃)
79 etransclem47.mp . . . . . 6 (𝜑 → (!‘𝑀) < 𝑃)
8039, 77, 52, 16, 78, 79, 19, 71etransclem44 46199 . . . . 5 (𝜑 → (Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) ≠ 0)
8176, 80negne0d 11645 . . . 4 (𝜑 → -(Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) ≠ 0)
8269, 81eqnetrd 3014 . . 3 (𝜑 → (-Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) ≠ 0)
8375, 82eqnetrd 3014 . 2 (𝜑𝐾 ≠ 0)
84 eldifsni 4815 . . . . . 6 (𝑄 ∈ ((Poly‘ℤ) ∖ {0𝑝}) → 𝑄 ≠ 0𝑝)
853, 84syl 17 . . . . 5 (𝜑𝑄 ≠ 0𝑝)
86 ere 16137 . . . . . . 7 e ∈ ℝ
8786recni 11304 . . . . . 6 e ∈ ℂ
8887a1i 11 . . . . 5 (𝜑 → e ∈ ℂ)
89 dgrnznn 26306 . . . . 5 (((𝑄 ∈ (Poly‘ℤ) ∧ 𝑄 ≠ 0𝑝) ∧ (e ∈ ℂ ∧ (𝑄‘e) = 0)) → (deg‘𝑄) ∈ ℕ)
9036, 85, 88, 4, 89syl22anc 838 . . . 4 (𝜑 → (deg‘𝑄) ∈ ℕ)
916, 90eqeltrid 2848 . . 3 (𝜑𝑀 ∈ ℕ)
92 etransclem47.9 . . 3 (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) / (!‘(𝑃 − 1)))) < 1)
9339, 20, 1, 18, 91, 19, 92etransclem23 46178 . 2 (𝜑 → (abs‘𝐾) < 1)
94 neeq1 3009 . . . 4 (𝑘 = 𝐾 → (𝑘 ≠ 0 ↔ 𝐾 ≠ 0))
95 fveq2 6920 . . . . 5 (𝑘 = 𝐾 → (abs‘𝑘) = (abs‘𝐾))
9695breq1d 5176 . . . 4 (𝑘 = 𝐾 → ((abs‘𝑘) < 1 ↔ (abs‘𝐾) < 1))
9794, 96anbi12d 631 . . 3 (𝑘 = 𝐾 → ((𝑘 ≠ 0 ∧ (abs‘𝑘) < 1) ↔ (𝐾 ≠ 0 ∧ (abs‘𝐾) < 1)))
9897rspcev 3635 . 2 ((𝐾 ∈ ℤ ∧ (𝐾 ≠ 0 ∧ (abs‘𝐾) < 1)) → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1))
9974, 83, 93, 98syl12anc 836 1 (𝜑 → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  wrex 3076  cdif 3973  wss 3976  {csn 4648  {cpr 4650   class class class wbr 5166  cmpt 5249   × cxp 5698  ran crn 5701  wf 6569  cfv 6573  (class class class)co 7448  1st c1st 8028  2nd c2nd 8029  Fincfn 9003  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cmin 11520  -cneg 11521   / cdiv 11947  cn 12293  0cn0 12553  cz 12639  (,)cioo 13407  [,]cicc 13410  ...cfz 13567  cexp 14112  !cfa 14322  abscabs 15283  Σcsu 15734  cprod 15951  eceu 16110  cprime 16718  t crest 17480  TopOpenctopn 17481  topGenctg 17497  fldccnfld 21387  citg 25672  0𝑝c0p 25723   D𝑛 cdvn 25919  Polycply 26243  coeffccoe 26245  degcdgr 26246  𝑐ccxp 26615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cc 10504  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-symdif 4272  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-prod 15952  df-ef 16115  df-e 16116  df-sin 16117  df-cos 16118  df-tan 16119  df-pi 16120  df-dvds 16303  df-gcd 16541  df-prm 16719  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-ovol 25518  df-vol 25519  df-mbf 25673  df-itg1 25674  df-itg2 25675  df-ibl 25676  df-itg 25677  df-0p 25724  df-limc 25921  df-dv 25922  df-dvn 25923  df-ply 26247  df-coe 26249  df-dgr 26250  df-log 26616  df-cxp 26617
This theorem is referenced by:  etransclem48  46203
  Copyright terms: Public domain W3C validator