Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem23 Structured version   Visualization version   GIF version

Theorem etransclem23 45783
Description: This is the claim proof in [Juillerat] p. 14 (but in our proof, Stirling's approximation is not used). (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem23.a (𝜑𝐴:ℕ0⟶ℤ)
etransclem23.l 𝐿 = Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)
etransclem23.k 𝐾 = (𝐿 / (!‘(𝑃 − 1)))
etransclem23.p (𝜑𝑃 ∈ ℕ)
etransclem23.m (𝜑𝑀 ∈ ℕ)
etransclem23.f 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
etransclem23.lt1 (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) / (!‘(𝑃 − 1)))) < 1)
Assertion
Ref Expression
etransclem23 (𝜑 → (abs‘𝐾) < 1)
Distinct variable groups:   𝑗,𝑀,𝑥   𝑃,𝑗,𝑥   𝜑,𝑗,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑗)   𝐹(𝑥,𝑗)   𝐾(𝑥,𝑗)   𝐿(𝑥,𝑗)

Proof of Theorem etransclem23
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem23.k . . . . . 6 𝐾 = (𝐿 / (!‘(𝑃 − 1)))
2 etransclem23.l . . . . . . 7 𝐿 = Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)
32oveq1i 7429 . . . . . 6 (𝐿 / (!‘(𝑃 − 1))) = (Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) / (!‘(𝑃 − 1)))
41, 3eqtri 2753 . . . . 5 𝐾 = (Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) / (!‘(𝑃 − 1)))
54fveq2i 6899 . . . 4 (abs‘𝐾) = (abs‘(Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) / (!‘(𝑃 − 1))))
65a1i 11 . . 3 (𝜑 → (abs‘𝐾) = (abs‘(Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) / (!‘(𝑃 − 1)))))
7 fzfid 13974 . . . . 5 (𝜑 → (0...𝑀) ∈ Fin)
8 etransclem23.a . . . . . . . . . 10 (𝜑𝐴:ℕ0⟶ℤ)
98adantr 479 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑀)) → 𝐴:ℕ0⟶ℤ)
10 elfznn0 13629 . . . . . . . . . 10 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℕ0)
1110adantl 480 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑗 ∈ ℕ0)
129, 11ffvelcdmd 7094 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → (𝐴𝑗) ∈ ℤ)
1312zcnd 12700 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑀)) → (𝐴𝑗) ∈ ℂ)
14 ere 16069 . . . . . . . . . 10 e ∈ ℝ
1514recni 11260 . . . . . . . . 9 e ∈ ℂ
1615a1i 11 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → e ∈ ℂ)
17 elfzelz 13536 . . . . . . . . . 10 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ)
1817zcnd 12700 . . . . . . . . 9 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℂ)
1918adantl 480 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑗 ∈ ℂ)
2016, 19cxpcld 26687 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑀)) → (e↑𝑐𝑗) ∈ ℂ)
2113, 20mulcld 11266 . . . . . 6 ((𝜑𝑗 ∈ (0...𝑀)) → ((𝐴𝑗) · (e↑𝑐𝑗)) ∈ ℂ)
2215a1i 11 . . . . . . . . 9 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → e ∈ ℂ)
23 elioore 13389 . . . . . . . . . . . 12 (𝑥 ∈ (0(,)𝑗) → 𝑥 ∈ ℝ)
2423recnd 11274 . . . . . . . . . . 11 (𝑥 ∈ (0(,)𝑗) → 𝑥 ∈ ℂ)
2524adantl 480 . . . . . . . . . 10 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑥 ∈ ℂ)
2625negcld 11590 . . . . . . . . 9 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → -𝑥 ∈ ℂ)
2722, 26cxpcld 26687 . . . . . . . 8 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (e↑𝑐-𝑥) ∈ ℂ)
28 ax-resscn 11197 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
2928a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ⊆ ℂ)
30 etransclem23.p . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℕ)
31 etransclem23.f . . . . . . . . . . . 12 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
3229, 30, 31etransclem8 45768 . . . . . . . . . . 11 (𝜑𝐹:ℝ⟶ℂ)
3332adantr 479 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0(,)𝑗)) → 𝐹:ℝ⟶ℂ)
3423adantl 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0(,)𝑗)) → 𝑥 ∈ ℝ)
3533, 34ffvelcdmd 7094 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)𝑗)) → (𝐹𝑥) ∈ ℂ)
3635adantlr 713 . . . . . . . 8 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (𝐹𝑥) ∈ ℂ)
3727, 36mulcld 11266 . . . . . . 7 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → ((e↑𝑐-𝑥) · (𝐹𝑥)) ∈ ℂ)
38 reelprrecn 11232 . . . . . . . . 9 ℝ ∈ {ℝ, ℂ}
3938a1i 11 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → ℝ ∈ {ℝ, ℂ})
40 reopn 44809 . . . . . . . . . 10 ℝ ∈ (topGen‘ran (,))
41 eqid 2725 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4241tgioo2 24763 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
4340, 42eleqtri 2823 . . . . . . . . 9 ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ)
4443a1i 11 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ))
4530adantr 479 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑃 ∈ ℕ)
46 etransclem23.m . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
4746nnnn0d 12565 . . . . . . . . 9 (𝜑𝑀 ∈ ℕ0)
4847adantr 479 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑀 ∈ ℕ0)
49 etransclem6 45766 . . . . . . . . 9 (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃))) = (𝑦 ∈ ℝ ↦ ((𝑦↑(𝑃 − 1)) · ∏ ∈ (1...𝑀)((𝑦)↑𝑃)))
50 etransclem6 45766 . . . . . . . . 9 (𝑦 ∈ ℝ ↦ ((𝑦↑(𝑃 − 1)) · ∏ ∈ (1...𝑀)((𝑦)↑𝑃))) = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑥𝑘)↑𝑃)))
5131, 49, 503eqtri 2757 . . . . . . . 8 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑥𝑘)↑𝑃)))
52 0red 11249 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → 0 ∈ ℝ)
5317zred 12699 . . . . . . . . 9 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℝ)
5453adantl 480 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑗 ∈ ℝ)
5539, 44, 45, 48, 51, 52, 54etransclem18 45778 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑥 ∈ (0(,)𝑗) ↦ ((e↑𝑐-𝑥) · (𝐹𝑥))) ∈ 𝐿1)
5637, 55itgcl 25757 . . . . . 6 ((𝜑𝑗 ∈ (0...𝑀)) → ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥 ∈ ℂ)
5721, 56mulcld 11266 . . . . 5 ((𝜑𝑗 ∈ (0...𝑀)) → (((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) ∈ ℂ)
587, 57fsumcl 15715 . . . 4 (𝜑 → Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) ∈ ℂ)
59 nnm1nn0 12546 . . . . . . 7 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
6030, 59syl 17 . . . . . 6 (𝜑 → (𝑃 − 1) ∈ ℕ0)
6160faccld 14279 . . . . 5 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ)
6261nncnd 12261 . . . 4 (𝜑 → (!‘(𝑃 − 1)) ∈ ℂ)
6361nnne0d 12295 . . . 4 (𝜑 → (!‘(𝑃 − 1)) ≠ 0)
6458, 62, 63absdivd 15438 . . 3 (𝜑 → (abs‘(Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) / (!‘(𝑃 − 1)))) = ((abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) / (abs‘(!‘(𝑃 − 1)))))
6561nnred 12260 . . . . 5 (𝜑 → (!‘(𝑃 − 1)) ∈ ℝ)
6661nnnn0d 12565 . . . . . 6 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ0)
6766nn0ge0d 12568 . . . . 5 (𝜑 → 0 ≤ (!‘(𝑃 − 1)))
6865, 67absidd 15405 . . . 4 (𝜑 → (abs‘(!‘(𝑃 − 1))) = (!‘(𝑃 − 1)))
6968oveq2d 7435 . . 3 (𝜑 → ((abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) / (abs‘(!‘(𝑃 − 1)))) = ((abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) / (!‘(𝑃 − 1))))
706, 64, 693eqtrd 2769 . 2 (𝜑 → (abs‘𝐾) = ((abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) / (!‘(𝑃 − 1))))
712, 58eqeltrid 2829 . . . . . . 7 (𝜑𝐿 ∈ ℂ)
7271, 62, 63divcld 12023 . . . . . 6 (𝜑 → (𝐿 / (!‘(𝑃 − 1))) ∈ ℂ)
731, 72eqeltrid 2829 . . . . 5 (𝜑𝐾 ∈ ℂ)
7473abscld 15419 . . . 4 (𝜑 → (abs‘𝐾) ∈ ℝ)
7570, 74eqeltrrd 2826 . . 3 (𝜑 → ((abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) / (!‘(𝑃 − 1))) ∈ ℝ)
7646nnred 12260 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℝ)
7730nnnn0d 12565 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ ℕ0)
7876, 77reexpcld 14163 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀𝑃) ∈ ℝ)
79 peano2nn0 12545 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ0)
8047, 79syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀 + 1) ∈ ℕ0)
8178, 80reexpcld 14163 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀𝑃)↑(𝑀 + 1)) ∈ ℝ)
8281recnd 11274 . . . . . . . . . . . . 13 (𝜑 → ((𝑀𝑃)↑(𝑀 + 1)) ∈ ℂ)
8346nncnd 12261 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℂ)
8482, 83mulcomd 11267 . . . . . . . . . . . 12 (𝜑 → (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀) = (𝑀 · ((𝑀𝑃)↑(𝑀 + 1))))
8530nncnd 12261 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ ℂ)
86 1cnd 11241 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℂ)
8785, 86npcand 11607 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑃 − 1) + 1) = 𝑃)
8887eqcomd 2731 . . . . . . . . . . . . . . 15 (𝜑𝑃 = ((𝑃 − 1) + 1))
8988oveq2d 7435 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀↑(𝑀 + 1))↑𝑃) = ((𝑀↑(𝑀 + 1))↑((𝑃 − 1) + 1)))
9080nn0cnd 12567 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 + 1) ∈ ℂ)
9190, 85mulcomd 11267 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑀 + 1) · 𝑃) = (𝑃 · (𝑀 + 1)))
9291oveq2d 7435 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀↑((𝑀 + 1) · 𝑃)) = (𝑀↑(𝑃 · (𝑀 + 1))))
9383, 77, 80expmuld 14149 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀↑((𝑀 + 1) · 𝑃)) = ((𝑀↑(𝑀 + 1))↑𝑃))
9483, 80, 77expmuld 14149 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀↑(𝑃 · (𝑀 + 1))) = ((𝑀𝑃)↑(𝑀 + 1)))
9592, 93, 943eqtr3d 2773 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀↑(𝑀 + 1))↑𝑃) = ((𝑀𝑃)↑(𝑀 + 1)))
9676, 80reexpcld 14163 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀↑(𝑀 + 1)) ∈ ℝ)
9796recnd 11274 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀↑(𝑀 + 1)) ∈ ℂ)
9897, 60expp1d 14147 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀↑(𝑀 + 1))↑((𝑃 − 1) + 1)) = (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) · (𝑀↑(𝑀 + 1))))
9989, 95, 983eqtr3d 2773 . . . . . . . . . . . . 13 (𝜑 → ((𝑀𝑃)↑(𝑀 + 1)) = (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) · (𝑀↑(𝑀 + 1))))
10099oveq2d 7435 . . . . . . . . . . . 12 (𝜑 → (𝑀 · ((𝑀𝑃)↑(𝑀 + 1))) = (𝑀 · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) · (𝑀↑(𝑀 + 1)))))
10197, 60expcld 14146 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) ∈ ℂ)
10283, 101, 97mul12d 11455 . . . . . . . . . . . . 13 (𝜑 → (𝑀 · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) · (𝑀↑(𝑀 + 1)))) = (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) · (𝑀 · (𝑀↑(𝑀 + 1)))))
10383, 97mulcld 11266 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 · (𝑀↑(𝑀 + 1))) ∈ ℂ)
104101, 103mulcomd 11267 . . . . . . . . . . . . 13 (𝜑 → (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) · (𝑀 · (𝑀↑(𝑀 + 1)))) = ((𝑀 · (𝑀↑(𝑀 + 1))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))))
105102, 104eqtrd 2765 . . . . . . . . . . . 12 (𝜑 → (𝑀 · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) · (𝑀↑(𝑀 + 1)))) = ((𝑀 · (𝑀↑(𝑀 + 1))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))))
10684, 100, 1053eqtrd 2769 . . . . . . . . . . 11 (𝜑 → (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀) = ((𝑀 · (𝑀↑(𝑀 + 1))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))))
107106adantr 479 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀) = ((𝑀 · (𝑀↑(𝑀 + 1))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))))
108107oveq2d 7435 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑀)) → ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) = ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · ((𝑀 · (𝑀↑(𝑀 + 1))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1)))))
10921abscld 15419 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘((𝐴𝑗) · (e↑𝑐𝑗))) ∈ ℝ)
110109recnd 11274 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘((𝐴𝑗) · (e↑𝑐𝑗))) ∈ ℂ)
111103adantr 479 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑀 · (𝑀↑(𝑀 + 1))) ∈ ℂ)
112101adantr 479 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → ((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) ∈ ℂ)
113110, 111, 112mulassd 11269 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑀)) → (((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))) = ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · ((𝑀 · (𝑀↑(𝑀 + 1))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1)))))
114108, 113eqtr4d 2768 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) = (((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))))
115114sumeq2dv 15685 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) = Σ𝑗 ∈ (0...𝑀)(((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))))
116110, 111mulcld 11266 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) ∈ ℂ)
1177, 101, 116fsummulc1 15767 . . . . . . 7 (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))) = Σ𝑗 ∈ (0...𝑀)(((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))))
118115, 117eqtr4d 2768 . . . . . 6 (𝜑 → Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) = (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))))
119118oveq1d 7434 . . . . 5 (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) / (!‘(𝑃 − 1))) = ((Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))) / (!‘(𝑃 − 1))))
1207, 116fsumcl 15715 . . . . . 6 (𝜑 → Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) ∈ ℂ)
121120, 101, 62, 63divassd 12058 . . . . 5 (𝜑 → ((Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))) / (!‘(𝑃 − 1))) = (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) / (!‘(𝑃 − 1)))))
122119, 121eqtrd 2765 . . . 4 (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) / (!‘(𝑃 − 1))) = (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) / (!‘(𝑃 − 1)))))
12381adantr 479 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → ((𝑀𝑃)↑(𝑀 + 1)) ∈ ℝ)
12476adantr 479 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑀 ∈ ℝ)
125123, 124remulcld 11276 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑀)) → (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀) ∈ ℝ)
126109, 125remulcld 11276 . . . . . 6 ((𝜑𝑗 ∈ (0...𝑀)) → ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) ∈ ℝ)
1277, 126fsumrecl 15716 . . . . 5 (𝜑 → Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) ∈ ℝ)
128127, 61nndivred 12299 . . . 4 (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) / (!‘(𝑃 − 1))) ∈ ℝ)
129122, 128eqeltrrd 2826 . . 3 (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) / (!‘(𝑃 − 1)))) ∈ ℝ)
130 1red 11247 . . 3 (𝜑 → 1 ∈ ℝ)
13158abscld 15419 . . . . 5 (𝜑 → (abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) ∈ ℝ)
13261nnrpd 13049 . . . . 5 (𝜑 → (!‘(𝑃 − 1)) ∈ ℝ+)
13357abscld 15419 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) ∈ ℝ)
1347, 133fsumrecl 15716 . . . . . 6 (𝜑 → Σ𝑗 ∈ (0...𝑀)(abs‘(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) ∈ ℝ)
1357, 57fsumabs 15783 . . . . . 6 (𝜑 → (abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) ≤ Σ𝑗 ∈ (0...𝑀)(abs‘(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)))
13681ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → ((𝑀𝑃)↑(𝑀 + 1)) ∈ ℝ)
137 ioombl 25538 . . . . . . . . . . . 12 (0(,)𝑗) ∈ dom vol
138137a1i 11 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀)) → (0(,)𝑗) ∈ dom vol)
139 0red 11249 . . . . . . . . . . . . . 14 (𝑗 ∈ (0...𝑀) → 0 ∈ ℝ)
140 elfzle1 13539 . . . . . . . . . . . . . 14 (𝑗 ∈ (0...𝑀) → 0 ≤ 𝑗)
141 volioo 25542 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ 𝑗 ∈ ℝ ∧ 0 ≤ 𝑗) → (vol‘(0(,)𝑗)) = (𝑗 − 0))
142139, 53, 140, 141syl3anc 1368 . . . . . . . . . . . . 13 (𝑗 ∈ (0...𝑀) → (vol‘(0(,)𝑗)) = (𝑗 − 0))
14353, 139resubcld 11674 . . . . . . . . . . . . 13 (𝑗 ∈ (0...𝑀) → (𝑗 − 0) ∈ ℝ)
144142, 143eqeltrd 2825 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑀) → (vol‘(0(,)𝑗)) ∈ ℝ)
145144adantl 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀)) → (vol‘(0(,)𝑗)) ∈ ℝ)
14682adantr 479 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀)) → ((𝑀𝑃)↑(𝑀 + 1)) ∈ ℂ)
147 iblconstmpt 45482 . . . . . . . . . . 11 (((0(,)𝑗) ∈ dom vol ∧ (vol‘(0(,)𝑗)) ∈ ℝ ∧ ((𝑀𝑃)↑(𝑀 + 1)) ∈ ℂ) → (𝑥 ∈ (0(,)𝑗) ↦ ((𝑀𝑃)↑(𝑀 + 1))) ∈ 𝐿1)
148138, 145, 146, 147syl3anc 1368 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑥 ∈ (0(,)𝑗) ↦ ((𝑀𝑃)↑(𝑀 + 1))) ∈ 𝐿1)
149136, 148itgrecl 25771 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑀)) → ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥 ∈ ℝ)
150109, 149remulcld 11276 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥) ∈ ℝ)
1517, 150fsumrecl 15716 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥) ∈ ℝ)
15221, 56absmuld 15437 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) = ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (abs‘∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)))
15356abscld 15419 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) ∈ ℝ)
15421absge0d 15427 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → 0 ≤ (abs‘((𝐴𝑗) · (e↑𝑐𝑗))))
15537abscld 15419 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘((e↑𝑐-𝑥) · (𝐹𝑥))) ∈ ℝ)
15637, 55iblabs 25802 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑥 ∈ (0(,)𝑗) ↦ (abs‘((e↑𝑐-𝑥) · (𝐹𝑥)))) ∈ 𝐿1)
157155, 156itgrecl 25771 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀)) → ∫(0(,)𝑗)(abs‘((e↑𝑐-𝑥) · (𝐹𝑥))) d𝑥 ∈ ℝ)
15837, 55itgabs 25808 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) ≤ ∫(0(,)𝑗)(abs‘((e↑𝑐-𝑥) · (𝐹𝑥))) d𝑥)
15927, 36absmuld 15437 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘((e↑𝑐-𝑥) · (𝐹𝑥))) = ((abs‘(e↑𝑐-𝑥)) · (abs‘(𝐹𝑥))))
16027abscld 15419 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘(e↑𝑐-𝑥)) ∈ ℝ)
161 1red 11247 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → 1 ∈ ℝ)
16236abscld 15419 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘(𝐹𝑥)) ∈ ℝ)
16327absge0d 15427 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → 0 ≤ (abs‘(e↑𝑐-𝑥)))
16436absge0d 15427 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → 0 ≤ (abs‘(𝐹𝑥)))
16514a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (0(,)𝑗) → e ∈ ℝ)
166 0re 11248 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℝ
167 epos 16187 . . . . . . . . . . . . . . . . . . . . . 22 0 < e
168166, 14, 167ltleii 11369 . . . . . . . . . . . . . . . . . . . . 21 0 ≤ e
169168a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (0(,)𝑗) → 0 ≤ e)
17023renegcld 11673 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (0(,)𝑗) → -𝑥 ∈ ℝ)
171165, 169, 170recxpcld 26702 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (0(,)𝑗) → (e↑𝑐-𝑥) ∈ ℝ)
172165, 169, 170cxpge0d 26703 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (0(,)𝑗) → 0 ≤ (e↑𝑐-𝑥))
173171, 172absidd 15405 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (0(,)𝑗) → (abs‘(e↑𝑐-𝑥)) = (e↑𝑐-𝑥))
174173adantl 480 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘(e↑𝑐-𝑥)) = (e↑𝑐-𝑥))
175171adantl 480 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → (e↑𝑐-𝑥) ∈ ℝ)
176 1red 11247 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 1 ∈ ℝ)
177 0xr 11293 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ ℝ*
178177a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 0 ∈ ℝ*)
17953rexrd 11296 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℝ*)
180179adantr 479 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑗 ∈ ℝ*)
181 simpr 483 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑥 ∈ (0(,)𝑗))
182 ioogtlb 45018 . . . . . . . . . . . . . . . . . . . . . 22 ((0 ∈ ℝ*𝑗 ∈ ℝ*𝑥 ∈ (0(,)𝑗)) → 0 < 𝑥)
183178, 180, 181, 182syl3anc 1368 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 0 < 𝑥)
18423adantl 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑥 ∈ ℝ)
185184lt0neg2d 11816 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → (0 < 𝑥 ↔ -𝑥 < 0))
186183, 185mpbid 231 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → -𝑥 < 0)
18714a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → e ∈ ℝ)
188 1lt2 12416 . . . . . . . . . . . . . . . . . . . . . . 23 1 < 2
189 egt2lt3 16186 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 < e ∧ e < 3)
190189simpli 482 . . . . . . . . . . . . . . . . . . . . . . 23 2 < e
191 1re 11246 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ℝ
192 2re 12319 . . . . . . . . . . . . . . . . . . . . . . . 24 2 ∈ ℝ
193191, 192, 14lttri 11372 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 < 2 ∧ 2 < e) → 1 < e)
194188, 190, 193mp2an 690 . . . . . . . . . . . . . . . . . . . . . 22 1 < e
195194a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 1 < e)
196170adantl 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → -𝑥 ∈ ℝ)
197 0red 11249 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 0 ∈ ℝ)
198187, 195, 196, 197cxpltd 26698 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → (-𝑥 < 0 ↔ (e↑𝑐-𝑥) < (e↑𝑐0)))
199186, 198mpbid 231 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → (e↑𝑐-𝑥) < (e↑𝑐0))
200 cxp0 26649 . . . . . . . . . . . . . . . . . . . 20 (e ∈ ℂ → (e↑𝑐0) = 1)
20115, 200mp1i 13 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → (e↑𝑐0) = 1)
202199, 201breqtrd 5175 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → (e↑𝑐-𝑥) < 1)
203175, 176, 202ltled 11394 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → (e↑𝑐-𝑥) ≤ 1)
204174, 203eqbrtrd 5171 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘(e↑𝑐-𝑥)) ≤ 1)
205204adantll 712 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘(e↑𝑐-𝑥)) ≤ 1)
20628a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → ℝ ⊆ ℂ)
20730ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑃 ∈ ℕ)
20847ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑀 ∈ ℕ0)
20931, 49eqtri 2753 . . . . . . . . . . . . . . . . . . 19 𝐹 = (𝑦 ∈ ℝ ↦ ((𝑦↑(𝑃 − 1)) · ∏ ∈ (1...𝑀)((𝑦)↑𝑃)))
21023adantl 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑥 ∈ ℝ)
211206, 207, 208, 209, 210etransclem13 45773 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (𝐹𝑥) = ∏ ∈ (0...𝑀)((𝑥)↑if( = 0, (𝑃 − 1), 𝑃)))
212211fveq2d 6900 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘(𝐹𝑥)) = (abs‘∏ ∈ (0...𝑀)((𝑥)↑if( = 0, (𝑃 − 1), 𝑃))))
213 nn0uz 12897 . . . . . . . . . . . . . . . . . 18 0 = (ℤ‘0)
21423adantr 479 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ ℕ0) → 𝑥 ∈ ℝ)
215 nn0re 12514 . . . . . . . . . . . . . . . . . . . . . . 23 ( ∈ ℕ0 ∈ ℝ)
216215adantl 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ ℕ0) → ∈ ℝ)
217214, 216resubcld 11674 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ ℕ0) → (𝑥) ∈ ℝ)
218217adantll 712 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ ℕ0) → (𝑥) ∈ ℝ)
21960, 77ifcld 4576 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → if( = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
220219ad3antrrr 728 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ ℕ0) → if( = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
221218, 220reexpcld 14163 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ ℕ0) → ((𝑥)↑if( = 0, (𝑃 − 1), 𝑃)) ∈ ℝ)
222221recnd 11274 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ ℕ0) → ((𝑥)↑if( = 0, (𝑃 − 1), 𝑃)) ∈ ℂ)
223213, 208, 222fprodabs 15954 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘∏ ∈ (0...𝑀)((𝑥)↑if( = 0, (𝑃 − 1), 𝑃))) = ∏ ∈ (0...𝑀)(abs‘((𝑥)↑if( = 0, (𝑃 − 1), 𝑃))))
224 elfznn0 13629 . . . . . . . . . . . . . . . . . . . 20 ( ∈ (0...𝑀) → ∈ ℕ0)
22524adantr 479 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ ℕ0) → 𝑥 ∈ ℂ)
226 nn0cn 12515 . . . . . . . . . . . . . . . . . . . . . . 23 ( ∈ ℕ0 ∈ ℂ)
227226adantl 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ ℕ0) → ∈ ℂ)
228225, 227subcld 11603 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ ℕ0) → (𝑥) ∈ ℂ)
229228adantll 712 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ ℕ0) → (𝑥) ∈ ℂ)
230224, 229sylan2 591 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑥) ∈ ℂ)
231219ad3antrrr 728 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → if( = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
232230, 231absexpd 15435 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (abs‘((𝑥)↑if( = 0, (𝑃 − 1), 𝑃))) = ((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)))
233232prodeq2dv 15903 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → ∏ ∈ (0...𝑀)(abs‘((𝑥)↑if( = 0, (𝑃 − 1), 𝑃))) = ∏ ∈ (0...𝑀)((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)))
234212, 223, 2333eqtrd 2769 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘(𝐹𝑥)) = ∏ ∈ (0...𝑀)((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)))
235 nfv 1909 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗))
236 fzfid 13974 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (0...𝑀) ∈ Fin)
237224, 228sylan2 591 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ (0...𝑀)) → (𝑥) ∈ ℂ)
238237abscld 15419 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ (0...𝑀)) → (abs‘(𝑥)) ∈ ℝ)
239238adantll 712 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (abs‘(𝑥)) ∈ ℝ)
240239, 231reexpcld 14163 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → ((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)) ∈ ℝ)
241237absge0d 15427 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ (0...𝑀)) → 0 ≤ (abs‘(𝑥)))
242241adantll 712 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 0 ≤ (abs‘(𝑥)))
243239, 231, 242expge0d 14164 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 0 ≤ ((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)))
24478ad3antrrr 728 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑀𝑃) ∈ ℝ)
24576ad3antrrr 728 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 𝑀 ∈ ℝ)
246245, 231reexpcld 14163 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑀↑if( = 0, (𝑃 − 1), 𝑃)) ∈ ℝ)
247224, 218sylan2 591 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑥) ∈ ℝ)
24824adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ (0...𝑀)) → 𝑥 ∈ ℂ)
249224, 227sylan2 591 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ (0...𝑀)) → ∈ ℂ)
250248, 249negsubdi2d 11619 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ (0...𝑀)) → -(𝑥) = (𝑥))
251250adantll 712 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → -(𝑥) = (𝑥))
252224adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → ∈ ℕ0)
253252nn0red 12566 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → ∈ ℝ)
254 0red 11249 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 0 ∈ ℝ)
255210adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 𝑥 ∈ ℝ)
256 elfzle2 13540 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ( ∈ (0...𝑀) → 𝑀)
257256adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 𝑀)
258197, 184, 183ltled 11394 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 0 ≤ 𝑥)
259258adantll 712 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → 0 ≤ 𝑥)
260259adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 0 ≤ 𝑥)
261253, 254, 245, 255, 257, 260le2subd 11866 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑥) ≤ (𝑀 − 0))
26283subid1d 11592 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝑀 − 0) = 𝑀)
263262ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑀 − 0) = 𝑀)
264261, 263breqtrd 5175 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑥) ≤ 𝑀)
265251, 264eqbrtrd 5171 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → -(𝑥) ≤ 𝑀)
266247, 245, 265lenegcon1d 11828 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → -𝑀 ≤ (𝑥))
267 elfzel2 13534 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑗 ∈ (0...𝑀) → 𝑀 ∈ ℤ)
268267zred 12699 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑗 ∈ (0...𝑀) → 𝑀 ∈ ℝ)
269268adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑀 ∈ ℝ)
27053adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑗 ∈ ℝ)
271 iooltub 45033 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((0 ∈ ℝ*𝑗 ∈ ℝ*𝑥 ∈ (0(,)𝑗)) → 𝑥 < 𝑗)
272178, 180, 181, 271syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑥 < 𝑗)
273 elfzle2 13540 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑗 ∈ (0...𝑀) → 𝑗𝑀)
274273adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑗𝑀)
275184, 270, 269, 272, 274ltletrd 11406 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑥 < 𝑀)
276184, 269, 275ltled 11394 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑥𝑀)
277276adantll 712 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑥𝑀)
278277adantr 479 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 𝑥𝑀)
279252nn0ge0d 12568 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 0 ≤ )
280255, 254, 245, 253, 278, 279le2subd 11866 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑥) ≤ (𝑀 − 0))
281280, 263breqtrd 5175 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑥) ≤ 𝑀)
282247, 245absled 15413 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → ((abs‘(𝑥)) ≤ 𝑀 ↔ (-𝑀 ≤ (𝑥) ∧ (𝑥) ≤ 𝑀)))
283266, 281, 282mpbir2and 711 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (abs‘(𝑥)) ≤ 𝑀)
284 leexp1a 14175 . . . . . . . . . . . . . . . . . . . 20 ((((abs‘(𝑥)) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ if( = 0, (𝑃 − 1), 𝑃) ∈ ℕ0) ∧ (0 ≤ (abs‘(𝑥)) ∧ (abs‘(𝑥)) ≤ 𝑀)) → ((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)) ≤ (𝑀↑if( = 0, (𝑃 − 1), 𝑃)))
285239, 245, 231, 242, 283, 284syl32anc 1375 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → ((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)) ≤ (𝑀↑if( = 0, (𝑃 − 1), 𝑃)))
28646nnge1d 12293 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 1 ≤ 𝑀)
287286ad3antrrr 728 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 1 ≤ 𝑀)
288219nn0zd 12617 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → if( = 0, (𝑃 − 1), 𝑃) ∈ ℤ)
28977nn0zd 12617 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑃 ∈ ℤ)
290 iftrue 4536 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( = 0 → if( = 0, (𝑃 − 1), 𝑃) = (𝑃 − 1))
291290adantl 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 = 0) → if( = 0, (𝑃 − 1), 𝑃) = (𝑃 − 1))
29230nnred 12260 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑃 ∈ ℝ)
293292lem1d 12180 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝑃 − 1) ≤ 𝑃)
294293adantr 479 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 = 0) → (𝑃 − 1) ≤ 𝑃)
295291, 294eqbrtrd 5171 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 = 0) → if( = 0, (𝑃 − 1), 𝑃) ≤ 𝑃)
296 iffalse 4539 . . . . . . . . . . . . . . . . . . . . . . . . 25 = 0 → if( = 0, (𝑃 − 1), 𝑃) = 𝑃)
297296adantl 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ ¬ = 0) → if( = 0, (𝑃 − 1), 𝑃) = 𝑃)
298292leidd 11812 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑃𝑃)
299298adantr 479 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ ¬ = 0) → 𝑃𝑃)
300297, 299eqbrtrd 5171 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ ¬ = 0) → if( = 0, (𝑃 − 1), 𝑃) ≤ 𝑃)
301295, 300pm2.61dan 811 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → if( = 0, (𝑃 − 1), 𝑃) ≤ 𝑃)
302 eluz2 12861 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ (ℤ‘if( = 0, (𝑃 − 1), 𝑃)) ↔ (if( = 0, (𝑃 − 1), 𝑃) ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ if( = 0, (𝑃 − 1), 𝑃) ≤ 𝑃))
303288, 289, 301, 302syl3anbrc 1340 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑃 ∈ (ℤ‘if( = 0, (𝑃 − 1), 𝑃)))
304303ad3antrrr 728 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 𝑃 ∈ (ℤ‘if( = 0, (𝑃 − 1), 𝑃)))
305245, 287, 304leexp2ad 14252 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑀↑if( = 0, (𝑃 − 1), 𝑃)) ≤ (𝑀𝑃))
306240, 246, 244, 285, 305letrd 11403 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → ((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)) ≤ (𝑀𝑃))
307235, 236, 240, 243, 244, 306fprodle 15976 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → ∏ ∈ (0...𝑀)((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)) ≤ ∏ ∈ (0...𝑀)(𝑀𝑃))
30878recnd 11274 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑀𝑃) ∈ ℂ)
309 fprodconst 15958 . . . . . . . . . . . . . . . . . . . 20 (((0...𝑀) ∈ Fin ∧ (𝑀𝑃) ∈ ℂ) → ∏ ∈ (0...𝑀)(𝑀𝑃) = ((𝑀𝑃)↑(♯‘(0...𝑀))))
3107, 308, 309syl2anc 582 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∏ ∈ (0...𝑀)(𝑀𝑃) = ((𝑀𝑃)↑(♯‘(0...𝑀))))
311 hashfz0 14427 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℕ0 → (♯‘(0...𝑀)) = (𝑀 + 1))
31247, 311syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (♯‘(0...𝑀)) = (𝑀 + 1))
313312oveq2d 7435 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑀𝑃)↑(♯‘(0...𝑀))) = ((𝑀𝑃)↑(𝑀 + 1)))
314310, 313eqtrd 2765 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∏ ∈ (0...𝑀)(𝑀𝑃) = ((𝑀𝑃)↑(𝑀 + 1)))
315314ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → ∏ ∈ (0...𝑀)(𝑀𝑃) = ((𝑀𝑃)↑(𝑀 + 1)))
316307, 315breqtrd 5175 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → ∏ ∈ (0...𝑀)((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)) ≤ ((𝑀𝑃)↑(𝑀 + 1)))
317234, 316eqbrtrd 5171 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘(𝐹𝑥)) ≤ ((𝑀𝑃)↑(𝑀 + 1)))
318160, 161, 162, 136, 163, 164, 205, 317lemul12ad 12189 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → ((abs‘(e↑𝑐-𝑥)) · (abs‘(𝐹𝑥))) ≤ (1 · ((𝑀𝑃)↑(𝑀 + 1))))
31982mullidd 11264 . . . . . . . . . . . . . . 15 (𝜑 → (1 · ((𝑀𝑃)↑(𝑀 + 1))) = ((𝑀𝑃)↑(𝑀 + 1)))
320319ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (1 · ((𝑀𝑃)↑(𝑀 + 1))) = ((𝑀𝑃)↑(𝑀 + 1)))
321318, 320breqtrd 5175 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → ((abs‘(e↑𝑐-𝑥)) · (abs‘(𝐹𝑥))) ≤ ((𝑀𝑃)↑(𝑀 + 1)))
322159, 321eqbrtrd 5171 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘((e↑𝑐-𝑥) · (𝐹𝑥))) ≤ ((𝑀𝑃)↑(𝑀 + 1)))
323156, 148, 155, 136, 322itgle 25783 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀)) → ∫(0(,)𝑗)(abs‘((e↑𝑐-𝑥) · (𝐹𝑥))) d𝑥 ≤ ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥)
324153, 157, 149, 158, 323letrd 11403 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) ≤ ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥)
325153, 149, 109, 154, 324lemul2ad 12187 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑀)) → ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (abs‘∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) ≤ ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥))
326152, 325eqbrtrd 5171 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) ≤ ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥))
3277, 133, 150, 326fsumle 15781 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (0...𝑀)(abs‘(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) ≤ Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥))
328 itgconst 25792 . . . . . . . . . . 11 (((0(,)𝑗) ∈ dom vol ∧ (vol‘(0(,)𝑗)) ∈ ℝ ∧ ((𝑀𝑃)↑(𝑀 + 1)) ∈ ℂ) → ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥 = (((𝑀𝑃)↑(𝑀 + 1)) · (vol‘(0(,)𝑗))))
329138, 145, 146, 328syl3anc 1368 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥 = (((𝑀𝑃)↑(𝑀 + 1)) · (vol‘(0(,)𝑗))))
33047nn0ge0d 12568 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ 𝑀)
33176, 77, 330expge0d 14164 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (𝑀𝑃))
33278, 80, 331expge0d 14164 . . . . . . . . . . . 12 (𝜑 → 0 ≤ ((𝑀𝑃)↑(𝑀 + 1)))
333332adantr 479 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀)) → 0 ≤ ((𝑀𝑃)↑(𝑀 + 1)))
33418subid1d 11592 . . . . . . . . . . . . . 14 (𝑗 ∈ (0...𝑀) → (𝑗 − 0) = 𝑗)
335142, 334eqtrd 2765 . . . . . . . . . . . . 13 (𝑗 ∈ (0...𝑀) → (vol‘(0(,)𝑗)) = 𝑗)
336335, 273eqbrtrd 5171 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑀) → (vol‘(0(,)𝑗)) ≤ 𝑀)
337336adantl 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀)) → (vol‘(0(,)𝑗)) ≤ 𝑀)
338145, 124, 123, 333, 337lemul2ad 12187 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → (((𝑀𝑃)↑(𝑀 + 1)) · (vol‘(0(,)𝑗))) ≤ (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀))
339329, 338eqbrtrd 5171 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑀)) → ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥 ≤ (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀))
340149, 125, 109, 154, 339lemul2ad 12187 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥) ≤ ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)))
3417, 150, 126, 340fsumle 15781 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥) ≤ Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)))
342134, 151, 127, 327, 341letrd 11403 . . . . . 6 (𝜑 → Σ𝑗 ∈ (0...𝑀)(abs‘(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) ≤ Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)))
343131, 134, 127, 135, 342letrd 11403 . . . . 5 (𝜑 → (abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) ≤ Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)))
344131, 127, 132, 343lediv1dd 13109 . . . 4 (𝜑 → ((abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) / (!‘(𝑃 − 1))) ≤ (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) / (!‘(𝑃 − 1))))
345344, 122breqtrd 5175 . . 3 (𝜑 → ((abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) / (!‘(𝑃 − 1))) ≤ (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) / (!‘(𝑃 − 1)))))
346 etransclem23.lt1 . . 3 (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) / (!‘(𝑃 − 1)))) < 1)
34775, 129, 130, 345, 346lelttrd 11404 . 2 (𝜑 → ((abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) / (!‘(𝑃 − 1))) < 1)
34870, 347eqbrtrd 5171 1 (𝜑 → (abs‘𝐾) < 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1533  wcel 2098  wss 3944  ifcif 4530  {cpr 4632   class class class wbr 5149  cmpt 5232  dom cdm 5678  ran crn 5679  wf 6545  cfv 6549  (class class class)co 7419  Fincfn 8964  cc 11138  cr 11139  0cc0 11140  1c1 11141   + caddc 11143   · cmul 11145  *cxr 11279   < clt 11280  cle 11281  cmin 11476  -cneg 11477   / cdiv 11903  cn 12245  2c2 12300  3c3 12301  0cn0 12505  cz 12591  cuz 12855  (,)cioo 13359  ...cfz 13519  cexp 14062  !cfa 14268  chash 14325  abscabs 15217  Σcsu 15668  cprod 15885  eceu 16042  t crest 17405  TopOpenctopn 17406  topGenctg 17422  fldccnfld 21296  volcvol 25436  𝐿1cibl 25590  citg 25591  𝑐ccxp 26534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9666  ax-cc 10460  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218  ax-addf 11219
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-disj 5115  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-ofr 7686  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-oadd 8491  df-omul 8492  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-fi 9436  df-sup 9467  df-inf 9468  df-oi 9535  df-dju 9926  df-card 9964  df-acn 9967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-q 12966  df-rp 13010  df-xneg 13127  df-xadd 13128  df-xmul 13129  df-ioo 13363  df-ioc 13364  df-ico 13365  df-icc 13366  df-fz 13520  df-fzo 13663  df-fl 13793  df-mod 13871  df-seq 14003  df-exp 14063  df-fac 14269  df-bc 14298  df-hash 14326  df-shft 15050  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-limsup 15451  df-clim 15468  df-rlim 15469  df-sum 15669  df-prod 15886  df-ef 16047  df-e 16048  df-sin 16049  df-cos 16050  df-tan 16051  df-pi 16052  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-starv 17251  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-hom 17260  df-cco 17261  df-rest 17407  df-topn 17408  df-0g 17426  df-gsum 17427  df-topgen 17428  df-pt 17429  df-prds 17432  df-xrs 17487  df-qtop 17492  df-imas 17493  df-xps 17495  df-mre 17569  df-mrc 17570  df-acs 17572  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18744  df-mulg 19032  df-cntz 19280  df-cmn 19749  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22840  df-topon 22857  df-topsp 22879  df-bases 22893  df-cld 22967  df-ntr 22968  df-cls 22969  df-nei 23046  df-lp 23084  df-perf 23085  df-cn 23175  df-cnp 23176  df-haus 23263  df-cmp 23335  df-tx 23510  df-hmeo 23703  df-fil 23794  df-fm 23886  df-flim 23887  df-flf 23888  df-xms 24270  df-ms 24271  df-tms 24272  df-cncf 24842  df-ovol 25437  df-vol 25438  df-mbf 25592  df-itg1 25593  df-itg2 25594  df-ibl 25595  df-itg 25596  df-0p 25643  df-limc 25839  df-dv 25840  df-log 26535  df-cxp 26536
This theorem is referenced by:  etransclem47  45807
  Copyright terms: Public domain W3C validator