Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem23 Structured version   Visualization version   GIF version

Theorem etransclem23 46255
Description: This is the claim proof in [Juillerat] p. 14 (but in our proof, Stirling's approximation is not used). (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem23.a (𝜑𝐴:ℕ0⟶ℤ)
etransclem23.l 𝐿 = Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)
etransclem23.k 𝐾 = (𝐿 / (!‘(𝑃 − 1)))
etransclem23.p (𝜑𝑃 ∈ ℕ)
etransclem23.m (𝜑𝑀 ∈ ℕ)
etransclem23.f 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
etransclem23.lt1 (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) / (!‘(𝑃 − 1)))) < 1)
Assertion
Ref Expression
etransclem23 (𝜑 → (abs‘𝐾) < 1)
Distinct variable groups:   𝑗,𝑀,𝑥   𝑃,𝑗,𝑥   𝜑,𝑗,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑗)   𝐹(𝑥,𝑗)   𝐾(𝑥,𝑗)   𝐿(𝑥,𝑗)

Proof of Theorem etransclem23
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem23.k . . . . . 6 𝐾 = (𝐿 / (!‘(𝑃 − 1)))
2 etransclem23.l . . . . . . 7 𝐿 = Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)
32oveq1i 7397 . . . . . 6 (𝐿 / (!‘(𝑃 − 1))) = (Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) / (!‘(𝑃 − 1)))
41, 3eqtri 2752 . . . . 5 𝐾 = (Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) / (!‘(𝑃 − 1)))
54fveq2i 6861 . . . 4 (abs‘𝐾) = (abs‘(Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) / (!‘(𝑃 − 1))))
65a1i 11 . . 3 (𝜑 → (abs‘𝐾) = (abs‘(Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) / (!‘(𝑃 − 1)))))
7 fzfid 13938 . . . . 5 (𝜑 → (0...𝑀) ∈ Fin)
8 etransclem23.a . . . . . . . . . 10 (𝜑𝐴:ℕ0⟶ℤ)
98adantr 480 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑀)) → 𝐴:ℕ0⟶ℤ)
10 elfznn0 13581 . . . . . . . . . 10 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℕ0)
1110adantl 481 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑗 ∈ ℕ0)
129, 11ffvelcdmd 7057 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → (𝐴𝑗) ∈ ℤ)
1312zcnd 12639 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑀)) → (𝐴𝑗) ∈ ℂ)
14 ere 16055 . . . . . . . . . 10 e ∈ ℝ
1514recni 11188 . . . . . . . . 9 e ∈ ℂ
1615a1i 11 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → e ∈ ℂ)
17 elfzelz 13485 . . . . . . . . . 10 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ)
1817zcnd 12639 . . . . . . . . 9 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℂ)
1918adantl 481 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑗 ∈ ℂ)
2016, 19cxpcld 26617 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑀)) → (e↑𝑐𝑗) ∈ ℂ)
2113, 20mulcld 11194 . . . . . 6 ((𝜑𝑗 ∈ (0...𝑀)) → ((𝐴𝑗) · (e↑𝑐𝑗)) ∈ ℂ)
2215a1i 11 . . . . . . . . 9 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → e ∈ ℂ)
23 elioore 13336 . . . . . . . . . . . 12 (𝑥 ∈ (0(,)𝑗) → 𝑥 ∈ ℝ)
2423recnd 11202 . . . . . . . . . . 11 (𝑥 ∈ (0(,)𝑗) → 𝑥 ∈ ℂ)
2524adantl 481 . . . . . . . . . 10 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑥 ∈ ℂ)
2625negcld 11520 . . . . . . . . 9 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → -𝑥 ∈ ℂ)
2722, 26cxpcld 26617 . . . . . . . 8 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (e↑𝑐-𝑥) ∈ ℂ)
28 ax-resscn 11125 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
2928a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ⊆ ℂ)
30 etransclem23.p . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℕ)
31 etransclem23.f . . . . . . . . . . . 12 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
3229, 30, 31etransclem8 46240 . . . . . . . . . . 11 (𝜑𝐹:ℝ⟶ℂ)
3332adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0(,)𝑗)) → 𝐹:ℝ⟶ℂ)
3423adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0(,)𝑗)) → 𝑥 ∈ ℝ)
3533, 34ffvelcdmd 7057 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)𝑗)) → (𝐹𝑥) ∈ ℂ)
3635adantlr 715 . . . . . . . 8 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (𝐹𝑥) ∈ ℂ)
3727, 36mulcld 11194 . . . . . . 7 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → ((e↑𝑐-𝑥) · (𝐹𝑥)) ∈ ℂ)
38 reelprrecn 11160 . . . . . . . . 9 ℝ ∈ {ℝ, ℂ}
3938a1i 11 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → ℝ ∈ {ℝ, ℂ})
40 reopn 45287 . . . . . . . . . 10 ℝ ∈ (topGen‘ran (,))
41 tgioo4 24693 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
4240, 41eleqtri 2826 . . . . . . . . 9 ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ)
4342a1i 11 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ))
4430adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑃 ∈ ℕ)
45 etransclem23.m . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
4645nnnn0d 12503 . . . . . . . . 9 (𝜑𝑀 ∈ ℕ0)
4746adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑀 ∈ ℕ0)
48 etransclem6 46238 . . . . . . . . 9 (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃))) = (𝑦 ∈ ℝ ↦ ((𝑦↑(𝑃 − 1)) · ∏ ∈ (1...𝑀)((𝑦)↑𝑃)))
49 etransclem6 46238 . . . . . . . . 9 (𝑦 ∈ ℝ ↦ ((𝑦↑(𝑃 − 1)) · ∏ ∈ (1...𝑀)((𝑦)↑𝑃))) = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑥𝑘)↑𝑃)))
5031, 48, 493eqtri 2756 . . . . . . . 8 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑥𝑘)↑𝑃)))
51 0red 11177 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → 0 ∈ ℝ)
5217zred 12638 . . . . . . . . 9 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℝ)
5352adantl 481 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑗 ∈ ℝ)
5439, 43, 44, 47, 50, 51, 53etransclem18 46250 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑥 ∈ (0(,)𝑗) ↦ ((e↑𝑐-𝑥) · (𝐹𝑥))) ∈ 𝐿1)
5537, 54itgcl 25685 . . . . . 6 ((𝜑𝑗 ∈ (0...𝑀)) → ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥 ∈ ℂ)
5621, 55mulcld 11194 . . . . 5 ((𝜑𝑗 ∈ (0...𝑀)) → (((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) ∈ ℂ)
577, 56fsumcl 15699 . . . 4 (𝜑 → Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) ∈ ℂ)
58 nnm1nn0 12483 . . . . . . 7 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
5930, 58syl 17 . . . . . 6 (𝜑 → (𝑃 − 1) ∈ ℕ0)
6059faccld 14249 . . . . 5 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ)
6160nncnd 12202 . . . 4 (𝜑 → (!‘(𝑃 − 1)) ∈ ℂ)
6260nnne0d 12236 . . . 4 (𝜑 → (!‘(𝑃 − 1)) ≠ 0)
6357, 61, 62absdivd 15424 . . 3 (𝜑 → (abs‘(Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) / (!‘(𝑃 − 1)))) = ((abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) / (abs‘(!‘(𝑃 − 1)))))
6460nnred 12201 . . . . 5 (𝜑 → (!‘(𝑃 − 1)) ∈ ℝ)
6560nnnn0d 12503 . . . . . 6 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ0)
6665nn0ge0d 12506 . . . . 5 (𝜑 → 0 ≤ (!‘(𝑃 − 1)))
6764, 66absidd 15389 . . . 4 (𝜑 → (abs‘(!‘(𝑃 − 1))) = (!‘(𝑃 − 1)))
6867oveq2d 7403 . . 3 (𝜑 → ((abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) / (abs‘(!‘(𝑃 − 1)))) = ((abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) / (!‘(𝑃 − 1))))
696, 63, 683eqtrd 2768 . 2 (𝜑 → (abs‘𝐾) = ((abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) / (!‘(𝑃 − 1))))
702, 57eqeltrid 2832 . . . . . . 7 (𝜑𝐿 ∈ ℂ)
7170, 61, 62divcld 11958 . . . . . 6 (𝜑 → (𝐿 / (!‘(𝑃 − 1))) ∈ ℂ)
721, 71eqeltrid 2832 . . . . 5 (𝜑𝐾 ∈ ℂ)
7372abscld 15405 . . . 4 (𝜑 → (abs‘𝐾) ∈ ℝ)
7469, 73eqeltrrd 2829 . . 3 (𝜑 → ((abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) / (!‘(𝑃 − 1))) ∈ ℝ)
7545nnred 12201 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℝ)
7630nnnn0d 12503 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ ℕ0)
7775, 76reexpcld 14128 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀𝑃) ∈ ℝ)
78 peano2nn0 12482 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ0)
7946, 78syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀 + 1) ∈ ℕ0)
8077, 79reexpcld 14128 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀𝑃)↑(𝑀 + 1)) ∈ ℝ)
8180recnd 11202 . . . . . . . . . . . . 13 (𝜑 → ((𝑀𝑃)↑(𝑀 + 1)) ∈ ℂ)
8245nncnd 12202 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℂ)
8381, 82mulcomd 11195 . . . . . . . . . . . 12 (𝜑 → (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀) = (𝑀 · ((𝑀𝑃)↑(𝑀 + 1))))
8430nncnd 12202 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ ℂ)
85 1cnd 11169 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℂ)
8684, 85npcand 11537 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑃 − 1) + 1) = 𝑃)
8786eqcomd 2735 . . . . . . . . . . . . . . 15 (𝜑𝑃 = ((𝑃 − 1) + 1))
8887oveq2d 7403 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀↑(𝑀 + 1))↑𝑃) = ((𝑀↑(𝑀 + 1))↑((𝑃 − 1) + 1)))
8979nn0cnd 12505 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 + 1) ∈ ℂ)
9089, 84mulcomd 11195 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑀 + 1) · 𝑃) = (𝑃 · (𝑀 + 1)))
9190oveq2d 7403 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀↑((𝑀 + 1) · 𝑃)) = (𝑀↑(𝑃 · (𝑀 + 1))))
9282, 76, 79expmuld 14114 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀↑((𝑀 + 1) · 𝑃)) = ((𝑀↑(𝑀 + 1))↑𝑃))
9382, 79, 76expmuld 14114 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀↑(𝑃 · (𝑀 + 1))) = ((𝑀𝑃)↑(𝑀 + 1)))
9491, 92, 933eqtr3d 2772 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀↑(𝑀 + 1))↑𝑃) = ((𝑀𝑃)↑(𝑀 + 1)))
9575, 79reexpcld 14128 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀↑(𝑀 + 1)) ∈ ℝ)
9695recnd 11202 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀↑(𝑀 + 1)) ∈ ℂ)
9796, 59expp1d 14112 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀↑(𝑀 + 1))↑((𝑃 − 1) + 1)) = (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) · (𝑀↑(𝑀 + 1))))
9888, 94, 973eqtr3d 2772 . . . . . . . . . . . . 13 (𝜑 → ((𝑀𝑃)↑(𝑀 + 1)) = (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) · (𝑀↑(𝑀 + 1))))
9998oveq2d 7403 . . . . . . . . . . . 12 (𝜑 → (𝑀 · ((𝑀𝑃)↑(𝑀 + 1))) = (𝑀 · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) · (𝑀↑(𝑀 + 1)))))
10096, 59expcld 14111 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) ∈ ℂ)
10182, 100, 96mul12d 11383 . . . . . . . . . . . . 13 (𝜑 → (𝑀 · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) · (𝑀↑(𝑀 + 1)))) = (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) · (𝑀 · (𝑀↑(𝑀 + 1)))))
10282, 96mulcld 11194 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 · (𝑀↑(𝑀 + 1))) ∈ ℂ)
103100, 102mulcomd 11195 . . . . . . . . . . . . 13 (𝜑 → (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) · (𝑀 · (𝑀↑(𝑀 + 1)))) = ((𝑀 · (𝑀↑(𝑀 + 1))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))))
104101, 103eqtrd 2764 . . . . . . . . . . . 12 (𝜑 → (𝑀 · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) · (𝑀↑(𝑀 + 1)))) = ((𝑀 · (𝑀↑(𝑀 + 1))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))))
10583, 99, 1043eqtrd 2768 . . . . . . . . . . 11 (𝜑 → (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀) = ((𝑀 · (𝑀↑(𝑀 + 1))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))))
106105adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀) = ((𝑀 · (𝑀↑(𝑀 + 1))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))))
107106oveq2d 7403 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑀)) → ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) = ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · ((𝑀 · (𝑀↑(𝑀 + 1))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1)))))
10821abscld 15405 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘((𝐴𝑗) · (e↑𝑐𝑗))) ∈ ℝ)
109108recnd 11202 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘((𝐴𝑗) · (e↑𝑐𝑗))) ∈ ℂ)
110102adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑀 · (𝑀↑(𝑀 + 1))) ∈ ℂ)
111100adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → ((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) ∈ ℂ)
112109, 110, 111mulassd 11197 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑀)) → (((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))) = ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · ((𝑀 · (𝑀↑(𝑀 + 1))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1)))))
113107, 112eqtr4d 2767 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) = (((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))))
114113sumeq2dv 15668 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) = Σ𝑗 ∈ (0...𝑀)(((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))))
115109, 110mulcld 11194 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) ∈ ℂ)
1167, 100, 115fsummulc1 15751 . . . . . . 7 (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))) = Σ𝑗 ∈ (0...𝑀)(((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))))
117114, 116eqtr4d 2767 . . . . . 6 (𝜑 → Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) = (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))))
118117oveq1d 7402 . . . . 5 (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) / (!‘(𝑃 − 1))) = ((Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))) / (!‘(𝑃 − 1))))
1197, 115fsumcl 15699 . . . . . 6 (𝜑 → Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) ∈ ℂ)
120119, 100, 61, 62divassd 11993 . . . . 5 (𝜑 → ((Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))) / (!‘(𝑃 − 1))) = (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) / (!‘(𝑃 − 1)))))
121118, 120eqtrd 2764 . . . 4 (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) / (!‘(𝑃 − 1))) = (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) / (!‘(𝑃 − 1)))))
12280adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → ((𝑀𝑃)↑(𝑀 + 1)) ∈ ℝ)
12375adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑀 ∈ ℝ)
124122, 123remulcld 11204 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑀)) → (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀) ∈ ℝ)
125108, 124remulcld 11204 . . . . . 6 ((𝜑𝑗 ∈ (0...𝑀)) → ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) ∈ ℝ)
1267, 125fsumrecl 15700 . . . . 5 (𝜑 → Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) ∈ ℝ)
127126, 60nndivred 12240 . . . 4 (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) / (!‘(𝑃 − 1))) ∈ ℝ)
128121, 127eqeltrrd 2829 . . 3 (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) / (!‘(𝑃 − 1)))) ∈ ℝ)
129 1red 11175 . . 3 (𝜑 → 1 ∈ ℝ)
13057abscld 15405 . . . . 5 (𝜑 → (abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) ∈ ℝ)
13160nnrpd 12993 . . . . 5 (𝜑 → (!‘(𝑃 − 1)) ∈ ℝ+)
13256abscld 15405 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) ∈ ℝ)
1337, 132fsumrecl 15700 . . . . . 6 (𝜑 → Σ𝑗 ∈ (0...𝑀)(abs‘(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) ∈ ℝ)
1347, 56fsumabs 15767 . . . . . 6 (𝜑 → (abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) ≤ Σ𝑗 ∈ (0...𝑀)(abs‘(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)))
13580ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → ((𝑀𝑃)↑(𝑀 + 1)) ∈ ℝ)
136 ioombl 25466 . . . . . . . . . . . 12 (0(,)𝑗) ∈ dom vol
137136a1i 11 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀)) → (0(,)𝑗) ∈ dom vol)
138 0red 11177 . . . . . . . . . . . . . 14 (𝑗 ∈ (0...𝑀) → 0 ∈ ℝ)
139 elfzle1 13488 . . . . . . . . . . . . . 14 (𝑗 ∈ (0...𝑀) → 0 ≤ 𝑗)
140 volioo 25470 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ 𝑗 ∈ ℝ ∧ 0 ≤ 𝑗) → (vol‘(0(,)𝑗)) = (𝑗 − 0))
141138, 52, 139, 140syl3anc 1373 . . . . . . . . . . . . 13 (𝑗 ∈ (0...𝑀) → (vol‘(0(,)𝑗)) = (𝑗 − 0))
14252, 138resubcld 11606 . . . . . . . . . . . . 13 (𝑗 ∈ (0...𝑀) → (𝑗 − 0) ∈ ℝ)
143141, 142eqeltrd 2828 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑀) → (vol‘(0(,)𝑗)) ∈ ℝ)
144143adantl 481 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀)) → (vol‘(0(,)𝑗)) ∈ ℝ)
14581adantr 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀)) → ((𝑀𝑃)↑(𝑀 + 1)) ∈ ℂ)
146 iblconstmpt 45954 . . . . . . . . . . 11 (((0(,)𝑗) ∈ dom vol ∧ (vol‘(0(,)𝑗)) ∈ ℝ ∧ ((𝑀𝑃)↑(𝑀 + 1)) ∈ ℂ) → (𝑥 ∈ (0(,)𝑗) ↦ ((𝑀𝑃)↑(𝑀 + 1))) ∈ 𝐿1)
147137, 144, 145, 146syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑥 ∈ (0(,)𝑗) ↦ ((𝑀𝑃)↑(𝑀 + 1))) ∈ 𝐿1)
148135, 147itgrecl 25699 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑀)) → ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥 ∈ ℝ)
149108, 148remulcld 11204 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥) ∈ ℝ)
1507, 149fsumrecl 15700 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥) ∈ ℝ)
15121, 55absmuld 15423 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) = ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (abs‘∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)))
15255abscld 15405 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) ∈ ℝ)
15321absge0d 15413 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → 0 ≤ (abs‘((𝐴𝑗) · (e↑𝑐𝑗))))
15437abscld 15405 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘((e↑𝑐-𝑥) · (𝐹𝑥))) ∈ ℝ)
15537, 54iblabs 25730 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑥 ∈ (0(,)𝑗) ↦ (abs‘((e↑𝑐-𝑥) · (𝐹𝑥)))) ∈ 𝐿1)
156154, 155itgrecl 25699 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀)) → ∫(0(,)𝑗)(abs‘((e↑𝑐-𝑥) · (𝐹𝑥))) d𝑥 ∈ ℝ)
15737, 54itgabs 25736 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) ≤ ∫(0(,)𝑗)(abs‘((e↑𝑐-𝑥) · (𝐹𝑥))) d𝑥)
15827, 36absmuld 15423 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘((e↑𝑐-𝑥) · (𝐹𝑥))) = ((abs‘(e↑𝑐-𝑥)) · (abs‘(𝐹𝑥))))
15927abscld 15405 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘(e↑𝑐-𝑥)) ∈ ℝ)
160 1red 11175 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → 1 ∈ ℝ)
16136abscld 15405 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘(𝐹𝑥)) ∈ ℝ)
16227absge0d 15413 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → 0 ≤ (abs‘(e↑𝑐-𝑥)))
16336absge0d 15413 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → 0 ≤ (abs‘(𝐹𝑥)))
16414a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (0(,)𝑗) → e ∈ ℝ)
165 0re 11176 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℝ
166 epos 16175 . . . . . . . . . . . . . . . . . . . . . 22 0 < e
167165, 14, 166ltleii 11297 . . . . . . . . . . . . . . . . . . . . 21 0 ≤ e
168167a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (0(,)𝑗) → 0 ≤ e)
16923renegcld 11605 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (0(,)𝑗) → -𝑥 ∈ ℝ)
170164, 168, 169recxpcld 26632 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (0(,)𝑗) → (e↑𝑐-𝑥) ∈ ℝ)
171164, 168, 169cxpge0d 26633 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (0(,)𝑗) → 0 ≤ (e↑𝑐-𝑥))
172170, 171absidd 15389 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (0(,)𝑗) → (abs‘(e↑𝑐-𝑥)) = (e↑𝑐-𝑥))
173172adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘(e↑𝑐-𝑥)) = (e↑𝑐-𝑥))
174170adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → (e↑𝑐-𝑥) ∈ ℝ)
175 1red 11175 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 1 ∈ ℝ)
176 0xr 11221 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ ℝ*
177176a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 0 ∈ ℝ*)
17852rexrd 11224 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℝ*)
179178adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑗 ∈ ℝ*)
180 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑥 ∈ (0(,)𝑗))
181 ioogtlb 45493 . . . . . . . . . . . . . . . . . . . . . 22 ((0 ∈ ℝ*𝑗 ∈ ℝ*𝑥 ∈ (0(,)𝑗)) → 0 < 𝑥)
182177, 179, 180, 181syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 0 < 𝑥)
18323adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑥 ∈ ℝ)
184183lt0neg2d 11748 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → (0 < 𝑥 ↔ -𝑥 < 0))
185182, 184mpbid 232 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → -𝑥 < 0)
18614a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → e ∈ ℝ)
187 1lt2 12352 . . . . . . . . . . . . . . . . . . . . . . 23 1 < 2
188 egt2lt3 16174 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 < e ∧ e < 3)
189188simpli 483 . . . . . . . . . . . . . . . . . . . . . . 23 2 < e
190 1re 11174 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ℝ
191 2re 12260 . . . . . . . . . . . . . . . . . . . . . . . 24 2 ∈ ℝ
192190, 191, 14lttri 11300 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 < 2 ∧ 2 < e) → 1 < e)
193187, 189, 192mp2an 692 . . . . . . . . . . . . . . . . . . . . . 22 1 < e
194193a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 1 < e)
195169adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → -𝑥 ∈ ℝ)
196 0red 11177 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 0 ∈ ℝ)
197186, 194, 195, 196cxpltd 26628 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → (-𝑥 < 0 ↔ (e↑𝑐-𝑥) < (e↑𝑐0)))
198185, 197mpbid 232 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → (e↑𝑐-𝑥) < (e↑𝑐0))
199 cxp0 26579 . . . . . . . . . . . . . . . . . . . 20 (e ∈ ℂ → (e↑𝑐0) = 1)
20015, 199mp1i 13 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → (e↑𝑐0) = 1)
201198, 200breqtrd 5133 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → (e↑𝑐-𝑥) < 1)
202174, 175, 201ltled 11322 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → (e↑𝑐-𝑥) ≤ 1)
203173, 202eqbrtrd 5129 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘(e↑𝑐-𝑥)) ≤ 1)
204203adantll 714 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘(e↑𝑐-𝑥)) ≤ 1)
20528a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → ℝ ⊆ ℂ)
20630ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑃 ∈ ℕ)
20746ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑀 ∈ ℕ0)
20831, 48eqtri 2752 . . . . . . . . . . . . . . . . . . 19 𝐹 = (𝑦 ∈ ℝ ↦ ((𝑦↑(𝑃 − 1)) · ∏ ∈ (1...𝑀)((𝑦)↑𝑃)))
20923adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑥 ∈ ℝ)
210205, 206, 207, 208, 209etransclem13 46245 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (𝐹𝑥) = ∏ ∈ (0...𝑀)((𝑥)↑if( = 0, (𝑃 − 1), 𝑃)))
211210fveq2d 6862 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘(𝐹𝑥)) = (abs‘∏ ∈ (0...𝑀)((𝑥)↑if( = 0, (𝑃 − 1), 𝑃))))
212 nn0uz 12835 . . . . . . . . . . . . . . . . . 18 0 = (ℤ‘0)
21323adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ ℕ0) → 𝑥 ∈ ℝ)
214 nn0re 12451 . . . . . . . . . . . . . . . . . . . . . . 23 ( ∈ ℕ0 ∈ ℝ)
215214adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ ℕ0) → ∈ ℝ)
216213, 215resubcld 11606 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ ℕ0) → (𝑥) ∈ ℝ)
217216adantll 714 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ ℕ0) → (𝑥) ∈ ℝ)
21859, 76ifcld 4535 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → if( = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
219218ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ ℕ0) → if( = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
220217, 219reexpcld 14128 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ ℕ0) → ((𝑥)↑if( = 0, (𝑃 − 1), 𝑃)) ∈ ℝ)
221220recnd 11202 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ ℕ0) → ((𝑥)↑if( = 0, (𝑃 − 1), 𝑃)) ∈ ℂ)
222212, 207, 221fprodabs 15940 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘∏ ∈ (0...𝑀)((𝑥)↑if( = 0, (𝑃 − 1), 𝑃))) = ∏ ∈ (0...𝑀)(abs‘((𝑥)↑if( = 0, (𝑃 − 1), 𝑃))))
223 elfznn0 13581 . . . . . . . . . . . . . . . . . . . 20 ( ∈ (0...𝑀) → ∈ ℕ0)
22424adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ ℕ0) → 𝑥 ∈ ℂ)
225 nn0cn 12452 . . . . . . . . . . . . . . . . . . . . . . 23 ( ∈ ℕ0 ∈ ℂ)
226225adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ ℕ0) → ∈ ℂ)
227224, 226subcld 11533 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ ℕ0) → (𝑥) ∈ ℂ)
228227adantll 714 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ ℕ0) → (𝑥) ∈ ℂ)
229223, 228sylan2 593 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑥) ∈ ℂ)
230218ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → if( = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
231229, 230absexpd 15421 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (abs‘((𝑥)↑if( = 0, (𝑃 − 1), 𝑃))) = ((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)))
232231prodeq2dv 15888 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → ∏ ∈ (0...𝑀)(abs‘((𝑥)↑if( = 0, (𝑃 − 1), 𝑃))) = ∏ ∈ (0...𝑀)((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)))
233211, 222, 2323eqtrd 2768 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘(𝐹𝑥)) = ∏ ∈ (0...𝑀)((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)))
234 nfv 1914 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗))
235 fzfid 13938 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (0...𝑀) ∈ Fin)
236223, 227sylan2 593 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ (0...𝑀)) → (𝑥) ∈ ℂ)
237236abscld 15405 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ (0...𝑀)) → (abs‘(𝑥)) ∈ ℝ)
238237adantll 714 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (abs‘(𝑥)) ∈ ℝ)
239238, 230reexpcld 14128 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → ((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)) ∈ ℝ)
240236absge0d 15413 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ (0...𝑀)) → 0 ≤ (abs‘(𝑥)))
241240adantll 714 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 0 ≤ (abs‘(𝑥)))
242238, 230, 241expge0d 14129 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 0 ≤ ((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)))
24377ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑀𝑃) ∈ ℝ)
24475ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 𝑀 ∈ ℝ)
245244, 230reexpcld 14128 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑀↑if( = 0, (𝑃 − 1), 𝑃)) ∈ ℝ)
246223, 217sylan2 593 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑥) ∈ ℝ)
24724adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ (0...𝑀)) → 𝑥 ∈ ℂ)
248223, 226sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ (0...𝑀)) → ∈ ℂ)
249247, 248negsubdi2d 11549 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ (0...𝑀)) → -(𝑥) = (𝑥))
250249adantll 714 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → -(𝑥) = (𝑥))
251223adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → ∈ ℕ0)
252251nn0red 12504 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → ∈ ℝ)
253 0red 11177 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 0 ∈ ℝ)
254209adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 𝑥 ∈ ℝ)
255 elfzle2 13489 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ( ∈ (0...𝑀) → 𝑀)
256255adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 𝑀)
257196, 183, 182ltled 11322 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 0 ≤ 𝑥)
258257adantll 714 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → 0 ≤ 𝑥)
259258adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 0 ≤ 𝑥)
260252, 253, 244, 254, 256, 259le2subd 11798 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑥) ≤ (𝑀 − 0))
26182subid1d 11522 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝑀 − 0) = 𝑀)
262261ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑀 − 0) = 𝑀)
263260, 262breqtrd 5133 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑥) ≤ 𝑀)
264250, 263eqbrtrd 5129 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → -(𝑥) ≤ 𝑀)
265246, 244, 264lenegcon1d 11760 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → -𝑀 ≤ (𝑥))
266 elfzel2 13483 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑗 ∈ (0...𝑀) → 𝑀 ∈ ℤ)
267266zred 12638 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑗 ∈ (0...𝑀) → 𝑀 ∈ ℝ)
268267adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑀 ∈ ℝ)
26952adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑗 ∈ ℝ)
270 iooltub 45508 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((0 ∈ ℝ*𝑗 ∈ ℝ*𝑥 ∈ (0(,)𝑗)) → 𝑥 < 𝑗)
271177, 179, 180, 270syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑥 < 𝑗)
272 elfzle2 13489 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑗 ∈ (0...𝑀) → 𝑗𝑀)
273272adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑗𝑀)
274183, 269, 268, 271, 273ltletrd 11334 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑥 < 𝑀)
275183, 268, 274ltled 11322 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑥𝑀)
276275adantll 714 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑥𝑀)
277276adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 𝑥𝑀)
278251nn0ge0d 12506 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 0 ≤ )
279254, 253, 244, 252, 277, 278le2subd 11798 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑥) ≤ (𝑀 − 0))
280279, 262breqtrd 5133 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑥) ≤ 𝑀)
281246, 244absled 15399 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → ((abs‘(𝑥)) ≤ 𝑀 ↔ (-𝑀 ≤ (𝑥) ∧ (𝑥) ≤ 𝑀)))
282265, 280, 281mpbir2and 713 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (abs‘(𝑥)) ≤ 𝑀)
283 leexp1a 14140 . . . . . . . . . . . . . . . . . . . 20 ((((abs‘(𝑥)) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ if( = 0, (𝑃 − 1), 𝑃) ∈ ℕ0) ∧ (0 ≤ (abs‘(𝑥)) ∧ (abs‘(𝑥)) ≤ 𝑀)) → ((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)) ≤ (𝑀↑if( = 0, (𝑃 − 1), 𝑃)))
284238, 244, 230, 241, 282, 283syl32anc 1380 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → ((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)) ≤ (𝑀↑if( = 0, (𝑃 − 1), 𝑃)))
28545nnge1d 12234 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 1 ≤ 𝑀)
286285ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 1 ≤ 𝑀)
287218nn0zd 12555 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → if( = 0, (𝑃 − 1), 𝑃) ∈ ℤ)
28876nn0zd 12555 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑃 ∈ ℤ)
289 iftrue 4494 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( = 0 → if( = 0, (𝑃 − 1), 𝑃) = (𝑃 − 1))
290289adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 = 0) → if( = 0, (𝑃 − 1), 𝑃) = (𝑃 − 1))
29130nnred 12201 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑃 ∈ ℝ)
292291lem1d 12116 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝑃 − 1) ≤ 𝑃)
293292adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 = 0) → (𝑃 − 1) ≤ 𝑃)
294290, 293eqbrtrd 5129 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 = 0) → if( = 0, (𝑃 − 1), 𝑃) ≤ 𝑃)
295 iffalse 4497 . . . . . . . . . . . . . . . . . . . . . . . . 25 = 0 → if( = 0, (𝑃 − 1), 𝑃) = 𝑃)
296295adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ ¬ = 0) → if( = 0, (𝑃 − 1), 𝑃) = 𝑃)
297291leidd 11744 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑃𝑃)
298297adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ ¬ = 0) → 𝑃𝑃)
299296, 298eqbrtrd 5129 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ ¬ = 0) → if( = 0, (𝑃 − 1), 𝑃) ≤ 𝑃)
300294, 299pm2.61dan 812 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → if( = 0, (𝑃 − 1), 𝑃) ≤ 𝑃)
301 eluz2 12799 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ (ℤ‘if( = 0, (𝑃 − 1), 𝑃)) ↔ (if( = 0, (𝑃 − 1), 𝑃) ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ if( = 0, (𝑃 − 1), 𝑃) ≤ 𝑃))
302287, 288, 300, 301syl3anbrc 1344 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑃 ∈ (ℤ‘if( = 0, (𝑃 − 1), 𝑃)))
303302ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 𝑃 ∈ (ℤ‘if( = 0, (𝑃 − 1), 𝑃)))
304244, 286, 303leexp2ad 14219 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑀↑if( = 0, (𝑃 − 1), 𝑃)) ≤ (𝑀𝑃))
305239, 245, 243, 284, 304letrd 11331 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → ((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)) ≤ (𝑀𝑃))
306234, 235, 239, 242, 243, 305fprodle 15962 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → ∏ ∈ (0...𝑀)((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)) ≤ ∏ ∈ (0...𝑀)(𝑀𝑃))
30777recnd 11202 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑀𝑃) ∈ ℂ)
308 fprodconst 15944 . . . . . . . . . . . . . . . . . . . 20 (((0...𝑀) ∈ Fin ∧ (𝑀𝑃) ∈ ℂ) → ∏ ∈ (0...𝑀)(𝑀𝑃) = ((𝑀𝑃)↑(♯‘(0...𝑀))))
3097, 307, 308syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∏ ∈ (0...𝑀)(𝑀𝑃) = ((𝑀𝑃)↑(♯‘(0...𝑀))))
310 hashfz0 14397 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℕ0 → (♯‘(0...𝑀)) = (𝑀 + 1))
31146, 310syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (♯‘(0...𝑀)) = (𝑀 + 1))
312311oveq2d 7403 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑀𝑃)↑(♯‘(0...𝑀))) = ((𝑀𝑃)↑(𝑀 + 1)))
313309, 312eqtrd 2764 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∏ ∈ (0...𝑀)(𝑀𝑃) = ((𝑀𝑃)↑(𝑀 + 1)))
314313ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → ∏ ∈ (0...𝑀)(𝑀𝑃) = ((𝑀𝑃)↑(𝑀 + 1)))
315306, 314breqtrd 5133 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → ∏ ∈ (0...𝑀)((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)) ≤ ((𝑀𝑃)↑(𝑀 + 1)))
316233, 315eqbrtrd 5129 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘(𝐹𝑥)) ≤ ((𝑀𝑃)↑(𝑀 + 1)))
317159, 160, 161, 135, 162, 163, 204, 316lemul12ad 12125 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → ((abs‘(e↑𝑐-𝑥)) · (abs‘(𝐹𝑥))) ≤ (1 · ((𝑀𝑃)↑(𝑀 + 1))))
31881mullidd 11192 . . . . . . . . . . . . . . 15 (𝜑 → (1 · ((𝑀𝑃)↑(𝑀 + 1))) = ((𝑀𝑃)↑(𝑀 + 1)))
319318ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (1 · ((𝑀𝑃)↑(𝑀 + 1))) = ((𝑀𝑃)↑(𝑀 + 1)))
320317, 319breqtrd 5133 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → ((abs‘(e↑𝑐-𝑥)) · (abs‘(𝐹𝑥))) ≤ ((𝑀𝑃)↑(𝑀 + 1)))
321158, 320eqbrtrd 5129 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘((e↑𝑐-𝑥) · (𝐹𝑥))) ≤ ((𝑀𝑃)↑(𝑀 + 1)))
322155, 147, 154, 135, 321itgle 25711 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀)) → ∫(0(,)𝑗)(abs‘((e↑𝑐-𝑥) · (𝐹𝑥))) d𝑥 ≤ ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥)
323152, 156, 148, 157, 322letrd 11331 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) ≤ ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥)
324152, 148, 108, 153, 323lemul2ad 12123 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑀)) → ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (abs‘∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) ≤ ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥))
325151, 324eqbrtrd 5129 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) ≤ ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥))
3267, 132, 149, 325fsumle 15765 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (0...𝑀)(abs‘(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) ≤ Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥))
327 itgconst 25720 . . . . . . . . . . 11 (((0(,)𝑗) ∈ dom vol ∧ (vol‘(0(,)𝑗)) ∈ ℝ ∧ ((𝑀𝑃)↑(𝑀 + 1)) ∈ ℂ) → ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥 = (((𝑀𝑃)↑(𝑀 + 1)) · (vol‘(0(,)𝑗))))
328137, 144, 145, 327syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥 = (((𝑀𝑃)↑(𝑀 + 1)) · (vol‘(0(,)𝑗))))
32946nn0ge0d 12506 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ 𝑀)
33075, 76, 329expge0d 14129 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (𝑀𝑃))
33177, 79, 330expge0d 14129 . . . . . . . . . . . 12 (𝜑 → 0 ≤ ((𝑀𝑃)↑(𝑀 + 1)))
332331adantr 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀)) → 0 ≤ ((𝑀𝑃)↑(𝑀 + 1)))
33318subid1d 11522 . . . . . . . . . . . . . 14 (𝑗 ∈ (0...𝑀) → (𝑗 − 0) = 𝑗)
334141, 333eqtrd 2764 . . . . . . . . . . . . 13 (𝑗 ∈ (0...𝑀) → (vol‘(0(,)𝑗)) = 𝑗)
335334, 272eqbrtrd 5129 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑀) → (vol‘(0(,)𝑗)) ≤ 𝑀)
336335adantl 481 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀)) → (vol‘(0(,)𝑗)) ≤ 𝑀)
337144, 123, 122, 332, 336lemul2ad 12123 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → (((𝑀𝑃)↑(𝑀 + 1)) · (vol‘(0(,)𝑗))) ≤ (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀))
338328, 337eqbrtrd 5129 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑀)) → ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥 ≤ (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀))
339148, 124, 108, 153, 338lemul2ad 12123 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥) ≤ ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)))
3407, 149, 125, 339fsumle 15765 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥) ≤ Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)))
341133, 150, 126, 326, 340letrd 11331 . . . . . 6 (𝜑 → Σ𝑗 ∈ (0...𝑀)(abs‘(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) ≤ Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)))
342130, 133, 126, 134, 341letrd 11331 . . . . 5 (𝜑 → (abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) ≤ Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)))
343130, 126, 131, 342lediv1dd 13053 . . . 4 (𝜑 → ((abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) / (!‘(𝑃 − 1))) ≤ (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) / (!‘(𝑃 − 1))))
344343, 121breqtrd 5133 . . 3 (𝜑 → ((abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) / (!‘(𝑃 − 1))) ≤ (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) / (!‘(𝑃 − 1)))))
345 etransclem23.lt1 . . 3 (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) / (!‘(𝑃 − 1)))) < 1)
34674, 128, 129, 344, 345lelttrd 11332 . 2 (𝜑 → ((abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) / (!‘(𝑃 − 1))) < 1)
34769, 346eqbrtrd 5129 1 (𝜑 → (abs‘𝐾) < 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3914  ifcif 4488  {cpr 4591   class class class wbr 5107  cmpt 5188  dom cdm 5638  ran crn 5639  wf 6507  cfv 6511  (class class class)co 7387  Fincfn 8918  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  *cxr 11207   < clt 11208  cle 11209  cmin 11405  -cneg 11406   / cdiv 11835  cn 12186  2c2 12241  3c3 12242  0cn0 12442  cz 12529  cuz 12793  (,)cioo 13306  ...cfz 13468  cexp 14026  !cfa 14238  chash 14295  abscabs 15200  Σcsu 15652  cprod 15869  eceu 16028  t crest 17383  TopOpenctopn 17384  topGenctg 17400  fldccnfld 21264  volcvol 25364  𝐿1cibl 25518  citg 25519  𝑐ccxp 26464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cc 10388  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-acn 9895  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-prod 15870  df-ef 16033  df-e 16034  df-sin 16035  df-cos 16036  df-tan 16037  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-ovol 25365  df-vol 25366  df-mbf 25520  df-itg1 25521  df-itg2 25522  df-ibl 25523  df-itg 25524  df-0p 25571  df-limc 25767  df-dv 25768  df-log 26465  df-cxp 26466
This theorem is referenced by:  etransclem47  46279
  Copyright terms: Public domain W3C validator