![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pncan3 | Structured version Visualization version GIF version |
Description: Subtraction and addition of equals. (Contributed by NM, 14-Mar-2005.) (Proof shortened by Steven Nguyen, 8-Jan-2023.) |
Ref | Expression |
---|---|
pncan3 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝐵 − 𝐴)) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subcl 11504 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵 − 𝐴) ∈ ℂ) | |
2 | eqid 2734 | . . . 4 ⊢ (𝐵 − 𝐴) = (𝐵 − 𝐴) | |
3 | subadd 11508 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐵 − 𝐴) ∈ ℂ) → ((𝐵 − 𝐴) = (𝐵 − 𝐴) ↔ (𝐴 + (𝐵 − 𝐴)) = 𝐵)) | |
4 | 2, 3 | mpbii 233 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐵 − 𝐴) ∈ ℂ) → (𝐴 + (𝐵 − 𝐴)) = 𝐵) |
5 | 1, 4 | mpd3an3 1461 | . 2 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐴 + (𝐵 − 𝐴)) = 𝐵) |
6 | 5 | ancoms 458 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝐵 − 𝐴)) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 (class class class)co 7430 ℂcc 11150 + caddc 11155 − cmin 11489 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-po 5596 df-so 5597 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-ltxr 11297 df-sub 11491 |
This theorem is referenced by: npcan 11514 nncan 11535 npncan3 11544 negid 11553 pncan3i 11583 pncan3d 11620 subdi 11693 posdif 11753 fzonmapblen 13744 fzen2 14006 bernneq2 14265 hashdom 14414 hashfz 14462 hashreshashfun 14474 swrdfv2 14695 addlenpfx 14725 ccatpfx 14735 2cshwid 14848 cshweqdif2 14853 2cshwcshw 14860 cshwcshid 14862 isercoll2 15701 isumshft 15871 dvdssubr 16338 vdwlem3 17016 vdwlem9 17022 prmgaplem7 17090 mplsubrglem 22041 blcvx 24833 dvef 26032 dvcvx 26073 sincosq2sgn 26555 sincosq3sgn 26556 sincosq4sgn 26557 eflogeq 26658 logdivlti 26676 advlogexp 26711 cvxcl 27042 scvxcvx 27043 cvxsconn 35227 resconn 35230 cos2h 37597 ftc1anclem5 37683 jm2.26a 42988 jm2.27c 42995 goldbachthlem1 47469 nn0sumshdiglemB 48469 |
Copyright terms: Public domain | W3C validator |