MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pncan3 Structured version   Visualization version   GIF version

Theorem pncan3 11429
Description: Subtraction and addition of equals. (Contributed by NM, 14-Mar-2005.) (Proof shortened by Steven Nguyen, 8-Jan-2023.)
Assertion
Ref Expression
pncan3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝐵𝐴)) = 𝐵)

Proof of Theorem pncan3
StepHypRef Expression
1 subcl 11420 . . 3 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵𝐴) ∈ ℂ)
2 eqid 2729 . . . 4 (𝐵𝐴) = (𝐵𝐴)
3 subadd 11424 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐵𝐴) ∈ ℂ) → ((𝐵𝐴) = (𝐵𝐴) ↔ (𝐴 + (𝐵𝐴)) = 𝐵))
42, 3mpbii 233 . . 3 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐵𝐴) ∈ ℂ) → (𝐴 + (𝐵𝐴)) = 𝐵)
51, 4mpd3an3 1464 . 2 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐴 + (𝐵𝐴)) = 𝐵)
65ancoms 458 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝐵𝐴)) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  (class class class)co 7387  cc 11066   + caddc 11071  cmin 11405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-ltxr 11213  df-sub 11407
This theorem is referenced by:  npcan  11430  nncan  11451  npncan3  11460  negid  11469  pncan3i  11499  pncan3d  11536  subdi  11611  posdif  11671  fzonmapblen  13669  fzen2  13934  bernneq2  14195  hashdom  14344  hashfz  14392  hashreshashfun  14404  swrdfv2  14626  addlenpfx  14656  ccatpfx  14666  2cshwid  14779  cshweqdif2  14784  2cshwcshw  14791  cshwcshid  14793  isercoll2  15635  isumshft  15805  dvdssubr  16275  vdwlem3  16954  vdwlem9  16960  prmgaplem7  17028  mplsubrglem  21913  blcvx  24686  dvef  25884  dvcvx  25925  sincosq2sgn  26408  sincosq3sgn  26409  sincosq4sgn  26410  eflogeq  26511  logdivlti  26529  advlogexp  26564  cvxcl  26895  scvxcvx  26896  cvxsconn  35230  resconn  35233  cos2h  37605  ftc1anclem5  37691  jm2.26a  42989  jm2.27c  42996  goldbachthlem1  47546  nn0sumshdiglemB  48609
  Copyright terms: Public domain W3C validator