MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pncan3 Structured version   Visualization version   GIF version

Theorem pncan3 11474
Description: Subtraction and addition of equals. (Contributed by NM, 14-Mar-2005.) (Proof shortened by Steven Nguyen, 8-Jan-2023.)
Assertion
Ref Expression
pncan3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝐵𝐴)) = 𝐵)

Proof of Theorem pncan3
StepHypRef Expression
1 subcl 11465 . . 3 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵𝐴) ∈ ℂ)
2 eqid 2730 . . . 4 (𝐵𝐴) = (𝐵𝐴)
3 subadd 11469 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐵𝐴) ∈ ℂ) → ((𝐵𝐴) = (𝐵𝐴) ↔ (𝐴 + (𝐵𝐴)) = 𝐵))
42, 3mpbii 232 . . 3 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐵𝐴) ∈ ℂ) → (𝐴 + (𝐵𝐴)) = 𝐵)
51, 4mpd3an3 1460 . 2 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐴 + (𝐵𝐴)) = 𝐵)
65ancoms 457 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝐵𝐴)) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1085   = wceq 1539  wcel 2104  (class class class)co 7413  cc 11112   + caddc 11117  cmin 11450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-pnf 11256  df-mnf 11257  df-ltxr 11259  df-sub 11452
This theorem is referenced by:  npcan  11475  nncan  11495  npncan3  11504  negid  11513  pncan3i  11543  pncan3d  11580  subdi  11653  posdif  11713  fzonmapblen  13684  fzen2  13940  bernneq2  14199  hashdom  14345  hashfz  14393  hashreshashfun  14405  swrdfv2  14617  addlenpfx  14647  ccatpfx  14657  2cshwid  14770  cshweqdif2  14775  2cshwcshw  14782  cshwcshid  14784  isercoll2  15621  isumshft  15791  dvdssubr  16254  vdwlem3  16922  vdwlem9  16928  prmgaplem7  16996  mplsubrglem  21784  blcvx  24536  dvef  25731  dvcvx  25771  sincosq2sgn  26243  sincosq3sgn  26244  sincosq4sgn  26245  eflogeq  26344  logdivlti  26362  advlogexp  26397  cvxcl  26723  scvxcvx  26724  cvxsconn  34530  resconn  34533  cos2h  36784  ftc1anclem5  36870  jm2.26a  42043  jm2.27c  42050  goldbachthlem1  46513  nn0sumshdiglemB  47395
  Copyright terms: Public domain W3C validator