MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pncan3 Structured version   Visualization version   GIF version

Theorem pncan3 11516
Description: Subtraction and addition of equals. (Contributed by NM, 14-Mar-2005.) (Proof shortened by Steven Nguyen, 8-Jan-2023.)
Assertion
Ref Expression
pncan3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝐵𝐴)) = 𝐵)

Proof of Theorem pncan3
StepHypRef Expression
1 subcl 11507 . . 3 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵𝐴) ∈ ℂ)
2 eqid 2737 . . . 4 (𝐵𝐴) = (𝐵𝐴)
3 subadd 11511 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐵𝐴) ∈ ℂ) → ((𝐵𝐴) = (𝐵𝐴) ↔ (𝐴 + (𝐵𝐴)) = 𝐵))
42, 3mpbii 233 . . 3 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐵𝐴) ∈ ℂ) → (𝐴 + (𝐵𝐴)) = 𝐵)
51, 4mpd3an3 1464 . 2 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐴 + (𝐵𝐴)) = 𝐵)
65ancoms 458 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝐵𝐴)) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  (class class class)co 7431  cc 11153   + caddc 11158  cmin 11492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-ltxr 11300  df-sub 11494
This theorem is referenced by:  npcan  11517  nncan  11538  npncan3  11547  negid  11556  pncan3i  11586  pncan3d  11623  subdi  11696  posdif  11756  fzonmapblen  13748  fzen2  14010  bernneq2  14269  hashdom  14418  hashfz  14466  hashreshashfun  14478  swrdfv2  14699  addlenpfx  14729  ccatpfx  14739  2cshwid  14852  cshweqdif2  14857  2cshwcshw  14864  cshwcshid  14866  isercoll2  15705  isumshft  15875  dvdssubr  16342  vdwlem3  17021  vdwlem9  17027  prmgaplem7  17095  mplsubrglem  22024  blcvx  24819  dvef  26018  dvcvx  26059  sincosq2sgn  26541  sincosq3sgn  26542  sincosq4sgn  26543  eflogeq  26644  logdivlti  26662  advlogexp  26697  cvxcl  27028  scvxcvx  27029  cvxsconn  35248  resconn  35251  cos2h  37618  ftc1anclem5  37704  jm2.26a  43012  jm2.27c  43019  goldbachthlem1  47532  nn0sumshdiglemB  48541
  Copyright terms: Public domain W3C validator