![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pncan3 | Structured version Visualization version GIF version |
Description: Subtraction and addition of equals. (Contributed by NM, 14-Mar-2005.) (Proof shortened by Steven Nguyen, 8-Jan-2023.) |
Ref | Expression |
---|---|
pncan3 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝐵 − 𝐴)) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subcl 11481 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵 − 𝐴) ∈ ℂ) | |
2 | eqid 2727 | . . . 4 ⊢ (𝐵 − 𝐴) = (𝐵 − 𝐴) | |
3 | subadd 11485 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐵 − 𝐴) ∈ ℂ) → ((𝐵 − 𝐴) = (𝐵 − 𝐴) ↔ (𝐴 + (𝐵 − 𝐴)) = 𝐵)) | |
4 | 2, 3 | mpbii 232 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐵 − 𝐴) ∈ ℂ) → (𝐴 + (𝐵 − 𝐴)) = 𝐵) |
5 | 1, 4 | mpd3an3 1459 | . 2 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐴 + (𝐵 − 𝐴)) = 𝐵) |
6 | 5 | ancoms 458 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝐵 − 𝐴)) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 (class class class)co 7414 ℂcc 11128 + caddc 11133 − cmin 11466 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-pnf 11272 df-mnf 11273 df-ltxr 11275 df-sub 11468 |
This theorem is referenced by: npcan 11491 nncan 11511 npncan3 11520 negid 11529 pncan3i 11559 pncan3d 11596 subdi 11669 posdif 11729 fzonmapblen 13702 fzen2 13958 bernneq2 14216 hashdom 14362 hashfz 14410 hashreshashfun 14422 swrdfv2 14635 addlenpfx 14665 ccatpfx 14675 2cshwid 14788 cshweqdif2 14793 2cshwcshw 14800 cshwcshid 14802 isercoll2 15639 isumshft 15809 dvdssubr 16273 vdwlem3 16943 vdwlem9 16949 prmgaplem7 17017 mplsubrglem 21933 blcvx 24701 dvef 25899 dvcvx 25940 sincosq2sgn 26421 sincosq3sgn 26422 sincosq4sgn 26423 eflogeq 26523 logdivlti 26541 advlogexp 26576 cvxcl 26904 scvxcvx 26905 cvxsconn 34789 resconn 34792 cos2h 37019 ftc1anclem5 37105 jm2.26a 42343 jm2.27c 42350 goldbachthlem1 46808 nn0sumshdiglemB 47616 |
Copyright terms: Public domain | W3C validator |