| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pncan3 | Structured version Visualization version GIF version | ||
| Description: Subtraction and addition of equals. (Contributed by NM, 14-Mar-2005.) (Proof shortened by Steven Nguyen, 8-Jan-2023.) |
| Ref | Expression |
|---|---|
| pncan3 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝐵 − 𝐴)) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subcl 11427 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵 − 𝐴) ∈ ℂ) | |
| 2 | eqid 2730 | . . . 4 ⊢ (𝐵 − 𝐴) = (𝐵 − 𝐴) | |
| 3 | subadd 11431 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐵 − 𝐴) ∈ ℂ) → ((𝐵 − 𝐴) = (𝐵 − 𝐴) ↔ (𝐴 + (𝐵 − 𝐴)) = 𝐵)) | |
| 4 | 2, 3 | mpbii 233 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐵 − 𝐴) ∈ ℂ) → (𝐴 + (𝐵 − 𝐴)) = 𝐵) |
| 5 | 1, 4 | mpd3an3 1464 | . 2 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐴 + (𝐵 − 𝐴)) = 𝐵) |
| 6 | 5 | ancoms 458 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝐵 − 𝐴)) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 (class class class)co 7390 ℂcc 11073 + caddc 11078 − cmin 11412 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-sub 11414 |
| This theorem is referenced by: npcan 11437 nncan 11458 npncan3 11467 negid 11476 pncan3i 11506 pncan3d 11543 subdi 11618 posdif 11678 fzonmapblen 13676 fzen2 13941 bernneq2 14202 hashdom 14351 hashfz 14399 hashreshashfun 14411 swrdfv2 14633 addlenpfx 14663 ccatpfx 14673 2cshwid 14786 cshweqdif2 14791 2cshwcshw 14798 cshwcshid 14800 isercoll2 15642 isumshft 15812 dvdssubr 16282 vdwlem3 16961 vdwlem9 16967 prmgaplem7 17035 mplsubrglem 21920 blcvx 24693 dvef 25891 dvcvx 25932 sincosq2sgn 26415 sincosq3sgn 26416 sincosq4sgn 26417 eflogeq 26518 logdivlti 26536 advlogexp 26571 cvxcl 26902 scvxcvx 26903 cvxsconn 35237 resconn 35240 cos2h 37612 ftc1anclem5 37698 jm2.26a 42996 jm2.27c 43003 goldbachthlem1 47550 nn0sumshdiglemB 48613 |
| Copyright terms: Public domain | W3C validator |