MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pncan3 Structured version   Visualization version   GIF version

Theorem pncan3 10886
Description: Subtraction and addition of equals. (Contributed by NM, 14-Mar-2005.) (Proof shortened by Steven Nguyen, 8-Jan-2023.)
Assertion
Ref Expression
pncan3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝐵𝐴)) = 𝐵)

Proof of Theorem pncan3
StepHypRef Expression
1 subcl 10877 . . 3 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵𝐴) ∈ ℂ)
2 eqid 2825 . . . 4 (𝐵𝐴) = (𝐵𝐴)
3 subadd 10881 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐵𝐴) ∈ ℂ) → ((𝐵𝐴) = (𝐵𝐴) ↔ (𝐴 + (𝐵𝐴)) = 𝐵))
42, 3mpbii 234 . . 3 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐵𝐴) ∈ ℂ) → (𝐴 + (𝐵𝐴)) = 𝐵)
51, 4mpd3an3 1455 . 2 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐴 + (𝐵𝐴)) = 𝐵)
65ancoms 459 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝐵𝐴)) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1081   = wceq 1530  wcel 2107  (class class class)co 7151  cc 10527   + caddc 10532  cmin 10862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-po 5472  df-so 5473  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-ltxr 10672  df-sub 10864
This theorem is referenced by:  npcan  10887  nncan  10907  npncan3  10916  negid  10925  pncan3i  10955  pncan3d  10992  subdi  11065  posdif  11125  fzonmapblen  13076  fzen2  13330  bernneq2  13584  hashdom  13733  hashfz  13781  hashreshashfun  13793  swrdfv2  14016  addlenpfx  14046  ccatpfx  14056  2cshwid  14169  cshweqdif2  14174  2cshwcshw  14180  cshwcshid  14182  isercoll2  15018  isumshft  15186  dvdssubr  15647  vdwlem3  16311  vdwlem9  16317  prmgaplem7  16385  mplsubrglem  20140  blcvx  23323  dvef  24494  dvcvx  24534  sincosq2sgn  25002  sincosq3sgn  25003  sincosq4sgn  25004  eflogeq  25100  logdivlti  25118  advlogexp  25153  cvxcl  25478  scvxcvx  25479  cvxsconn  32376  resconn  32379  cos2h  34752  ftc1anclem5  34840  jm2.26a  39464  jm2.27c  39471  goldbachthlem1  43541  nn0sumshdiglemB  44514
  Copyright terms: Public domain W3C validator