![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pncan3 | Structured version Visualization version GIF version |
Description: Subtraction and addition of equals. (Contributed by NM, 14-Mar-2005.) (Proof shortened by Steven Nguyen, 8-Jan-2023.) |
Ref | Expression |
---|---|
pncan3 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝐵 − 𝐴)) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subcl 11465 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵 − 𝐴) ∈ ℂ) | |
2 | eqid 2730 | . . . 4 ⊢ (𝐵 − 𝐴) = (𝐵 − 𝐴) | |
3 | subadd 11469 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐵 − 𝐴) ∈ ℂ) → ((𝐵 − 𝐴) = (𝐵 − 𝐴) ↔ (𝐴 + (𝐵 − 𝐴)) = 𝐵)) | |
4 | 2, 3 | mpbii 232 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐵 − 𝐴) ∈ ℂ) → (𝐴 + (𝐵 − 𝐴)) = 𝐵) |
5 | 1, 4 | mpd3an3 1460 | . 2 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐴 + (𝐵 − 𝐴)) = 𝐵) |
6 | 5 | ancoms 457 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝐵 − 𝐴)) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1085 = wceq 1539 ∈ wcel 2104 (class class class)co 7413 ℂcc 11112 + caddc 11117 − cmin 11450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11256 df-mnf 11257 df-ltxr 11259 df-sub 11452 |
This theorem is referenced by: npcan 11475 nncan 11495 npncan3 11504 negid 11513 pncan3i 11543 pncan3d 11580 subdi 11653 posdif 11713 fzonmapblen 13684 fzen2 13940 bernneq2 14199 hashdom 14345 hashfz 14393 hashreshashfun 14405 swrdfv2 14617 addlenpfx 14647 ccatpfx 14657 2cshwid 14770 cshweqdif2 14775 2cshwcshw 14782 cshwcshid 14784 isercoll2 15621 isumshft 15791 dvdssubr 16254 vdwlem3 16922 vdwlem9 16928 prmgaplem7 16996 mplsubrglem 21784 blcvx 24536 dvef 25731 dvcvx 25771 sincosq2sgn 26243 sincosq3sgn 26244 sincosq4sgn 26245 eflogeq 26344 logdivlti 26362 advlogexp 26397 cvxcl 26723 scvxcvx 26724 cvxsconn 34530 resconn 34533 cos2h 36784 ftc1anclem5 36870 jm2.26a 42043 jm2.27c 42050 goldbachthlem1 46513 nn0sumshdiglemB 47395 |
Copyright terms: Public domain | W3C validator |