| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pncan3 | Structured version Visualization version GIF version | ||
| Description: Subtraction and addition of equals. (Contributed by NM, 14-Mar-2005.) (Proof shortened by Steven Nguyen, 8-Jan-2023.) |
| Ref | Expression |
|---|---|
| pncan3 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝐵 − 𝐴)) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subcl 11473 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵 − 𝐴) ∈ ℂ) | |
| 2 | eqid 2734 | . . . 4 ⊢ (𝐵 − 𝐴) = (𝐵 − 𝐴) | |
| 3 | subadd 11477 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐵 − 𝐴) ∈ ℂ) → ((𝐵 − 𝐴) = (𝐵 − 𝐴) ↔ (𝐴 + (𝐵 − 𝐴)) = 𝐵)) | |
| 4 | 2, 3 | mpbii 233 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐵 − 𝐴) ∈ ℂ) → (𝐴 + (𝐵 − 𝐴)) = 𝐵) |
| 5 | 1, 4 | mpd3an3 1463 | . 2 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐴 + (𝐵 − 𝐴)) = 𝐵) |
| 6 | 5 | ancoms 458 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝐵 − 𝐴)) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 (class class class)co 7399 ℂcc 11119 + caddc 11124 − cmin 11458 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-po 5558 df-so 5559 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-er 8713 df-en 8954 df-dom 8955 df-sdom 8956 df-pnf 11263 df-mnf 11264 df-ltxr 11266 df-sub 11460 |
| This theorem is referenced by: npcan 11483 nncan 11504 npncan3 11513 negid 11522 pncan3i 11552 pncan3d 11589 subdi 11662 posdif 11722 fzonmapblen 13714 fzen2 13976 bernneq2 14236 hashdom 14385 hashfz 14433 hashreshashfun 14445 swrdfv2 14666 addlenpfx 14696 ccatpfx 14706 2cshwid 14819 cshweqdif2 14824 2cshwcshw 14831 cshwcshid 14833 isercoll2 15672 isumshft 15842 dvdssubr 16309 vdwlem3 16988 vdwlem9 16994 prmgaplem7 17062 mplsubrglem 21949 blcvx 24722 dvef 25921 dvcvx 25962 sincosq2sgn 26444 sincosq3sgn 26445 sincosq4sgn 26446 eflogeq 26547 logdivlti 26565 advlogexp 26600 cvxcl 26931 scvxcvx 26932 cvxsconn 35186 resconn 35189 cos2h 37556 ftc1anclem5 37642 jm2.26a 42949 jm2.27c 42956 goldbachthlem1 47477 nn0sumshdiglemB 48486 |
| Copyright terms: Public domain | W3C validator |