![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > resubid | Structured version Visualization version GIF version |
Description: Subtraction of a real number from itself (compare subid 11484). (Contributed by SN, 23-Jan-2024.) |
Ref | Expression |
---|---|
resubid | โข (๐ด โ โ โ (๐ด โโ ๐ด) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | re0m0e0 41578 | . . 3 โข (0 โโ 0) = 0 | |
2 | 1 | oveq2i 7423 | . 2 โข (๐ด ยท (0 โโ 0)) = (๐ด ยท 0) |
3 | sn-00idlem1 41574 | . 2 โข (๐ด โ โ โ (๐ด ยท (0 โโ 0)) = (๐ด โโ ๐ด)) | |
4 | remul01 41583 | . 2 โข (๐ด โ โ โ (๐ด ยท 0) = 0) | |
5 | 2, 3, 4 | 3eqtr3a 2795 | 1 โข (๐ด โ โ โ (๐ด โโ ๐ด) = 0) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1540 โ wcel 2105 (class class class)co 7412 โcr 11112 0cc0 11113 ยท cmul 11118 โโ cresub 41541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-pnf 11255 df-mnf 11256 df-ltxr 11258 df-2 12280 df-3 12281 df-resub 41542 |
This theorem is referenced by: readdrid 41585 reposdif 41619 relt0neg2 41621 |
Copyright terms: Public domain | W3C validator |