![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > satf0sucom | Structured version Visualization version GIF version |
Description: The satisfaction predicate as function over wff codes in the empty model with an empty binary relation at a successor of ω. (Contributed by AV, 14-Sep-2023.) |
Ref | Expression |
---|---|
satf0sucom | ⊢ (𝑁 ∈ suc ω → ((∅ Sat ∅)‘𝑁) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | satf0 35340 | . . 3 ⊢ (∅ Sat ∅) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))}) ↾ suc ω) | |
2 | 1 | fveq1i 6921 | . 2 ⊢ ((∅ Sat ∅)‘𝑁) = ((rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))}) ↾ suc ω)‘𝑁) |
3 | fvres 6939 | . 2 ⊢ (𝑁 ∈ suc ω → ((rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))}) ↾ suc ω)‘𝑁) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘𝑁)) | |
4 | 2, 3 | eqtrid 2792 | 1 ⊢ (𝑁 ∈ suc ω → ((∅ Sat ∅)‘𝑁) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 Vcvv 3488 ∪ cun 3974 ∅c0 4352 {copab 5228 ↦ cmpt 5249 ↾ cres 5702 suc csuc 6397 ‘cfv 6573 (class class class)co 7448 ωcom 7903 1st c1st 8028 reccrdg 8465 ∈𝑔cgoe 35301 ⊼𝑔cgna 35302 ∀𝑔cgol 35303 Sat csat 35304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-map 8886 df-sat 35311 |
This theorem is referenced by: satf00 35342 satf0suc 35344 sat1el2xp 35347 fmla 35349 fmlasuc0 35352 |
Copyright terms: Public domain | W3C validator |