Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > seqomlem3 | Structured version Visualization version GIF version |
Description: Lemma for seqω. (Contributed by Stefan O'Rear, 1-Nov-2014.) |
Ref | Expression |
---|---|
seqomlem.a | ⊢ 𝑄 = rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉) |
Ref | Expression |
---|---|
seqomlem3 | ⊢ ((𝑄 “ ω)‘∅) = ( I ‘𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano1 7723 | . . . . . . 7 ⊢ ∅ ∈ ω | |
2 | fvres 6787 | . . . . . . 7 ⊢ (∅ ∈ ω → ((𝑄 ↾ ω)‘∅) = (𝑄‘∅)) | |
3 | 1, 2 | ax-mp 5 | . . . . . 6 ⊢ ((𝑄 ↾ ω)‘∅) = (𝑄‘∅) |
4 | seqomlem.a | . . . . . . 7 ⊢ 𝑄 = rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉) | |
5 | 4 | fveq1i 6769 | . . . . . 6 ⊢ (𝑄‘∅) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉)‘∅) |
6 | opex 5381 | . . . . . . 7 ⊢ 〈∅, ( I ‘𝐼)〉 ∈ V | |
7 | 6 | rdg0 8236 | . . . . . 6 ⊢ (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉)‘∅) = 〈∅, ( I ‘𝐼)〉 |
8 | 3, 5, 7 | 3eqtri 2771 | . . . . 5 ⊢ ((𝑄 ↾ ω)‘∅) = 〈∅, ( I ‘𝐼)〉 |
9 | frfnom 8250 | . . . . . . 7 ⊢ (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉) ↾ ω) Fn ω | |
10 | 4 | reseq1i 5884 | . . . . . . . 8 ⊢ (𝑄 ↾ ω) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉) ↾ ω) |
11 | 10 | fneq1i 6526 | . . . . . . 7 ⊢ ((𝑄 ↾ ω) Fn ω ↔ (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉) ↾ ω) Fn ω) |
12 | 9, 11 | mpbir 230 | . . . . . 6 ⊢ (𝑄 ↾ ω) Fn ω |
13 | fnfvelrn 6952 | . . . . . 6 ⊢ (((𝑄 ↾ ω) Fn ω ∧ ∅ ∈ ω) → ((𝑄 ↾ ω)‘∅) ∈ ran (𝑄 ↾ ω)) | |
14 | 12, 1, 13 | mp2an 688 | . . . . 5 ⊢ ((𝑄 ↾ ω)‘∅) ∈ ran (𝑄 ↾ ω) |
15 | 8, 14 | eqeltrri 2837 | . . . 4 ⊢ 〈∅, ( I ‘𝐼)〉 ∈ ran (𝑄 ↾ ω) |
16 | df-ima 5601 | . . . 4 ⊢ (𝑄 “ ω) = ran (𝑄 ↾ ω) | |
17 | 15, 16 | eleqtrri 2839 | . . 3 ⊢ 〈∅, ( I ‘𝐼)〉 ∈ (𝑄 “ ω) |
18 | df-br 5079 | . . 3 ⊢ (∅(𝑄 “ ω)( I ‘𝐼) ↔ 〈∅, ( I ‘𝐼)〉 ∈ (𝑄 “ ω)) | |
19 | 17, 18 | mpbir 230 | . 2 ⊢ ∅(𝑄 “ ω)( I ‘𝐼) |
20 | 4 | seqomlem2 8266 | . . 3 ⊢ (𝑄 “ ω) Fn ω |
21 | fnbrfvb 6816 | . . 3 ⊢ (((𝑄 “ ω) Fn ω ∧ ∅ ∈ ω) → (((𝑄 “ ω)‘∅) = ( I ‘𝐼) ↔ ∅(𝑄 “ ω)( I ‘𝐼))) | |
22 | 20, 1, 21 | mp2an 688 | . 2 ⊢ (((𝑄 “ ω)‘∅) = ( I ‘𝐼) ↔ ∅(𝑄 “ ω)( I ‘𝐼)) |
23 | 19, 22 | mpbir 230 | 1 ⊢ ((𝑄 “ ω)‘∅) = ( I ‘𝐼) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ∈ wcel 2109 Vcvv 3430 ∅c0 4261 〈cop 4572 class class class wbr 5078 I cid 5487 ran crn 5589 ↾ cres 5590 “ cima 5591 suc csuc 6265 Fn wfn 6425 ‘cfv 6430 (class class class)co 7268 ∈ cmpo 7270 ωcom 7700 reccrdg 8224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 |
This theorem is referenced by: seqom0g 8271 |
Copyright terms: Public domain | W3C validator |