![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > seqomlem3 | Structured version Visualization version GIF version |
Description: Lemma for seqω. (Contributed by Stefan O'Rear, 1-Nov-2014.) |
Ref | Expression |
---|---|
seqomlem.a | ⊢ 𝑄 = rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉) |
Ref | Expression |
---|---|
seqomlem3 | ⊢ ((𝑄 “ ω)‘∅) = ( I ‘𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano1 7929 | . . . . . . 7 ⊢ ∅ ∈ ω | |
2 | fvres 6941 | . . . . . . 7 ⊢ (∅ ∈ ω → ((𝑄 ↾ ω)‘∅) = (𝑄‘∅)) | |
3 | 1, 2 | ax-mp 5 | . . . . . 6 ⊢ ((𝑄 ↾ ω)‘∅) = (𝑄‘∅) |
4 | seqomlem.a | . . . . . . 7 ⊢ 𝑄 = rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉) | |
5 | 4 | fveq1i 6923 | . . . . . 6 ⊢ (𝑄‘∅) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉)‘∅) |
6 | opex 5484 | . . . . . . 7 ⊢ 〈∅, ( I ‘𝐼)〉 ∈ V | |
7 | 6 | rdg0 8479 | . . . . . 6 ⊢ (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉)‘∅) = 〈∅, ( I ‘𝐼)〉 |
8 | 3, 5, 7 | 3eqtri 2772 | . . . . 5 ⊢ ((𝑄 ↾ ω)‘∅) = 〈∅, ( I ‘𝐼)〉 |
9 | frfnom 8493 | . . . . . . 7 ⊢ (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉) ↾ ω) Fn ω | |
10 | 4 | reseq1i 6007 | . . . . . . . 8 ⊢ (𝑄 ↾ ω) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉) ↾ ω) |
11 | 10 | fneq1i 6678 | . . . . . . 7 ⊢ ((𝑄 ↾ ω) Fn ω ↔ (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉) ↾ ω) Fn ω) |
12 | 9, 11 | mpbir 231 | . . . . . 6 ⊢ (𝑄 ↾ ω) Fn ω |
13 | fnfvelrn 7116 | . . . . . 6 ⊢ (((𝑄 ↾ ω) Fn ω ∧ ∅ ∈ ω) → ((𝑄 ↾ ω)‘∅) ∈ ran (𝑄 ↾ ω)) | |
14 | 12, 1, 13 | mp2an 691 | . . . . 5 ⊢ ((𝑄 ↾ ω)‘∅) ∈ ran (𝑄 ↾ ω) |
15 | 8, 14 | eqeltrri 2841 | . . . 4 ⊢ 〈∅, ( I ‘𝐼)〉 ∈ ran (𝑄 ↾ ω) |
16 | df-ima 5713 | . . . 4 ⊢ (𝑄 “ ω) = ran (𝑄 ↾ ω) | |
17 | 15, 16 | eleqtrri 2843 | . . 3 ⊢ 〈∅, ( I ‘𝐼)〉 ∈ (𝑄 “ ω) |
18 | df-br 5167 | . . 3 ⊢ (∅(𝑄 “ ω)( I ‘𝐼) ↔ 〈∅, ( I ‘𝐼)〉 ∈ (𝑄 “ ω)) | |
19 | 17, 18 | mpbir 231 | . 2 ⊢ ∅(𝑄 “ ω)( I ‘𝐼) |
20 | 4 | seqomlem2 8509 | . . 3 ⊢ (𝑄 “ ω) Fn ω |
21 | fnbrfvb 6975 | . . 3 ⊢ (((𝑄 “ ω) Fn ω ∧ ∅ ∈ ω) → (((𝑄 “ ω)‘∅) = ( I ‘𝐼) ↔ ∅(𝑄 “ ω)( I ‘𝐼))) | |
22 | 20, 1, 21 | mp2an 691 | . 2 ⊢ (((𝑄 “ ω)‘∅) = ( I ‘𝐼) ↔ ∅(𝑄 “ ω)( I ‘𝐼)) |
23 | 19, 22 | mpbir 231 | 1 ⊢ ((𝑄 “ ω)‘∅) = ( I ‘𝐼) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 〈cop 4654 class class class wbr 5166 I cid 5592 ran crn 5701 ↾ cres 5702 “ cima 5703 suc csuc 6399 Fn wfn 6570 ‘cfv 6575 (class class class)co 7450 ∈ cmpo 7452 ωcom 7905 reccrdg 8467 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-ov 7453 df-oprab 7454 df-mpo 7455 df-om 7906 df-2nd 8033 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 |
This theorem is referenced by: seqom0g 8514 |
Copyright terms: Public domain | W3C validator |