MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqomlem3 Structured version   Visualization version   GIF version

Theorem seqomlem3 8460
Description: Lemma for seqω. (Contributed by Stefan O'Rear, 1-Nov-2014.)
Hypothesis
Ref Expression
seqomlem.a 𝑄 = rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)
Assertion
Ref Expression
seqomlem3 ((𝑄 “ ω)‘∅) = ( I ‘𝐼)
Distinct variable groups:   𝑄,𝑖,𝑣   𝑖,𝐹,𝑣
Allowed substitution hints:   𝐼(𝑣,𝑖)

Proof of Theorem seqomlem3
StepHypRef Expression
1 peano1 7878 . . . . . . 7 ∅ ∈ ω
2 fvres 6891 . . . . . . 7 (∅ ∈ ω → ((𝑄 ↾ ω)‘∅) = (𝑄‘∅))
31, 2ax-mp 5 . . . . . 6 ((𝑄 ↾ ω)‘∅) = (𝑄‘∅)
4 seqomlem.a . . . . . . 7 𝑄 = rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)
54fveq1i 6873 . . . . . 6 (𝑄‘∅) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)‘∅)
6 opex 5436 . . . . . . 7 ⟨∅, ( I ‘𝐼)⟩ ∈ V
76rdg0 8429 . . . . . 6 (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)‘∅) = ⟨∅, ( I ‘𝐼)⟩
83, 5, 73eqtri 2761 . . . . 5 ((𝑄 ↾ ω)‘∅) = ⟨∅, ( I ‘𝐼)⟩
9 frfnom 8443 . . . . . . 7 (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω) Fn ω
104reseq1i 5959 . . . . . . . 8 (𝑄 ↾ ω) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)
1110fneq1i 6631 . . . . . . 7 ((𝑄 ↾ ω) Fn ω ↔ (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω) Fn ω)
129, 11mpbir 231 . . . . . 6 (𝑄 ↾ ω) Fn ω
13 fnfvelrn 7066 . . . . . 6 (((𝑄 ↾ ω) Fn ω ∧ ∅ ∈ ω) → ((𝑄 ↾ ω)‘∅) ∈ ran (𝑄 ↾ ω))
1412, 1, 13mp2an 692 . . . . 5 ((𝑄 ↾ ω)‘∅) ∈ ran (𝑄 ↾ ω)
158, 14eqeltrri 2830 . . . 4 ⟨∅, ( I ‘𝐼)⟩ ∈ ran (𝑄 ↾ ω)
16 df-ima 5664 . . . 4 (𝑄 “ ω) = ran (𝑄 ↾ ω)
1715, 16eleqtrri 2832 . . 3 ⟨∅, ( I ‘𝐼)⟩ ∈ (𝑄 “ ω)
18 df-br 5117 . . 3 (∅(𝑄 “ ω)( I ‘𝐼) ↔ ⟨∅, ( I ‘𝐼)⟩ ∈ (𝑄 “ ω))
1917, 18mpbir 231 . 2 ∅(𝑄 “ ω)( I ‘𝐼)
204seqomlem2 8459 . . 3 (𝑄 “ ω) Fn ω
21 fnbrfvb 6925 . . 3 (((𝑄 “ ω) Fn ω ∧ ∅ ∈ ω) → (((𝑄 “ ω)‘∅) = ( I ‘𝐼) ↔ ∅(𝑄 “ ω)( I ‘𝐼)))
2220, 1, 21mp2an 692 . 2 (((𝑄 “ ω)‘∅) = ( I ‘𝐼) ↔ ∅(𝑄 “ ω)( I ‘𝐼))
2319, 22mpbir 231 1 ((𝑄 “ ω)‘∅) = ( I ‘𝐼)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1539  wcel 2107  Vcvv 3457  c0 4306  cop 4605   class class class wbr 5116   I cid 5544  ran crn 5652  cres 5653  cima 5654  suc csuc 6351   Fn wfn 6522  cfv 6527  (class class class)co 7399  cmpo 7401  ωcom 7855  reccrdg 8417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pr 5399  ax-un 7723
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-ov 7402  df-oprab 7403  df-mpo 7404  df-om 7856  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418
This theorem is referenced by:  seqom0g  8464
  Copyright terms: Public domain W3C validator