MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqomlem3 Structured version   Visualization version   GIF version

Theorem seqomlem3 8371
Description: Lemma for seqω. (Contributed by Stefan O'Rear, 1-Nov-2014.)
Hypothesis
Ref Expression
seqomlem.a 𝑄 = rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)
Assertion
Ref Expression
seqomlem3 ((𝑄 “ ω)‘∅) = ( I ‘𝐼)
Distinct variable groups:   𝑄,𝑖,𝑣   𝑖,𝐹,𝑣
Allowed substitution hints:   𝐼(𝑣,𝑖)

Proof of Theorem seqomlem3
StepHypRef Expression
1 peano1 7819 . . . . . . 7 ∅ ∈ ω
2 fvres 6841 . . . . . . 7 (∅ ∈ ω → ((𝑄 ↾ ω)‘∅) = (𝑄‘∅))
31, 2ax-mp 5 . . . . . 6 ((𝑄 ↾ ω)‘∅) = (𝑄‘∅)
4 seqomlem.a . . . . . . 7 𝑄 = rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)
54fveq1i 6823 . . . . . 6 (𝑄‘∅) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)‘∅)
6 opex 5402 . . . . . . 7 ⟨∅, ( I ‘𝐼)⟩ ∈ V
76rdg0 8340 . . . . . 6 (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)‘∅) = ⟨∅, ( I ‘𝐼)⟩
83, 5, 73eqtri 2758 . . . . 5 ((𝑄 ↾ ω)‘∅) = ⟨∅, ( I ‘𝐼)⟩
9 frfnom 8354 . . . . . . 7 (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω) Fn ω
104reseq1i 5923 . . . . . . . 8 (𝑄 ↾ ω) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)
1110fneq1i 6578 . . . . . . 7 ((𝑄 ↾ ω) Fn ω ↔ (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω) Fn ω)
129, 11mpbir 231 . . . . . 6 (𝑄 ↾ ω) Fn ω
13 fnfvelrn 7013 . . . . . 6 (((𝑄 ↾ ω) Fn ω ∧ ∅ ∈ ω) → ((𝑄 ↾ ω)‘∅) ∈ ran (𝑄 ↾ ω))
1412, 1, 13mp2an 692 . . . . 5 ((𝑄 ↾ ω)‘∅) ∈ ran (𝑄 ↾ ω)
158, 14eqeltrri 2828 . . . 4 ⟨∅, ( I ‘𝐼)⟩ ∈ ran (𝑄 ↾ ω)
16 df-ima 5627 . . . 4 (𝑄 “ ω) = ran (𝑄 ↾ ω)
1715, 16eleqtrri 2830 . . 3 ⟨∅, ( I ‘𝐼)⟩ ∈ (𝑄 “ ω)
18 df-br 5090 . . 3 (∅(𝑄 “ ω)( I ‘𝐼) ↔ ⟨∅, ( I ‘𝐼)⟩ ∈ (𝑄 “ ω))
1917, 18mpbir 231 . 2 ∅(𝑄 “ ω)( I ‘𝐼)
204seqomlem2 8370 . . 3 (𝑄 “ ω) Fn ω
21 fnbrfvb 6872 . . 3 (((𝑄 “ ω) Fn ω ∧ ∅ ∈ ω) → (((𝑄 “ ω)‘∅) = ( I ‘𝐼) ↔ ∅(𝑄 “ ω)( I ‘𝐼)))
2220, 1, 21mp2an 692 . 2 (((𝑄 “ ω)‘∅) = ( I ‘𝐼) ↔ ∅(𝑄 “ ω)( I ‘𝐼))
2319, 22mpbir 231 1 ((𝑄 “ ω)‘∅) = ( I ‘𝐼)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wcel 2111  Vcvv 3436  c0 4280  cop 4579   class class class wbr 5089   I cid 5508  ran crn 5615  cres 5616  cima 5617  suc csuc 6308   Fn wfn 6476  cfv 6481  (class class class)co 7346  cmpo 7348  ωcom 7796  reccrdg 8328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329
This theorem is referenced by:  seqom0g  8375
  Copyright terms: Public domain W3C validator