MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqomlem3 Structured version   Visualization version   GIF version

Theorem seqomlem3 8267
Description: Lemma for seqω. (Contributed by Stefan O'Rear, 1-Nov-2014.)
Hypothesis
Ref Expression
seqomlem.a 𝑄 = rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)
Assertion
Ref Expression
seqomlem3 ((𝑄 “ ω)‘∅) = ( I ‘𝐼)
Distinct variable groups:   𝑄,𝑖,𝑣   𝑖,𝐹,𝑣
Allowed substitution hints:   𝐼(𝑣,𝑖)

Proof of Theorem seqomlem3
StepHypRef Expression
1 peano1 7723 . . . . . . 7 ∅ ∈ ω
2 fvres 6787 . . . . . . 7 (∅ ∈ ω → ((𝑄 ↾ ω)‘∅) = (𝑄‘∅))
31, 2ax-mp 5 . . . . . 6 ((𝑄 ↾ ω)‘∅) = (𝑄‘∅)
4 seqomlem.a . . . . . . 7 𝑄 = rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)
54fveq1i 6769 . . . . . 6 (𝑄‘∅) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)‘∅)
6 opex 5381 . . . . . . 7 ⟨∅, ( I ‘𝐼)⟩ ∈ V
76rdg0 8236 . . . . . 6 (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)‘∅) = ⟨∅, ( I ‘𝐼)⟩
83, 5, 73eqtri 2771 . . . . 5 ((𝑄 ↾ ω)‘∅) = ⟨∅, ( I ‘𝐼)⟩
9 frfnom 8250 . . . . . . 7 (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω) Fn ω
104reseq1i 5884 . . . . . . . 8 (𝑄 ↾ ω) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)
1110fneq1i 6526 . . . . . . 7 ((𝑄 ↾ ω) Fn ω ↔ (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω) Fn ω)
129, 11mpbir 230 . . . . . 6 (𝑄 ↾ ω) Fn ω
13 fnfvelrn 6952 . . . . . 6 (((𝑄 ↾ ω) Fn ω ∧ ∅ ∈ ω) → ((𝑄 ↾ ω)‘∅) ∈ ran (𝑄 ↾ ω))
1412, 1, 13mp2an 688 . . . . 5 ((𝑄 ↾ ω)‘∅) ∈ ran (𝑄 ↾ ω)
158, 14eqeltrri 2837 . . . 4 ⟨∅, ( I ‘𝐼)⟩ ∈ ran (𝑄 ↾ ω)
16 df-ima 5601 . . . 4 (𝑄 “ ω) = ran (𝑄 ↾ ω)
1715, 16eleqtrri 2839 . . 3 ⟨∅, ( I ‘𝐼)⟩ ∈ (𝑄 “ ω)
18 df-br 5079 . . 3 (∅(𝑄 “ ω)( I ‘𝐼) ↔ ⟨∅, ( I ‘𝐼)⟩ ∈ (𝑄 “ ω))
1917, 18mpbir 230 . 2 ∅(𝑄 “ ω)( I ‘𝐼)
204seqomlem2 8266 . . 3 (𝑄 “ ω) Fn ω
21 fnbrfvb 6816 . . 3 (((𝑄 “ ω) Fn ω ∧ ∅ ∈ ω) → (((𝑄 “ ω)‘∅) = ( I ‘𝐼) ↔ ∅(𝑄 “ ω)( I ‘𝐼)))
2220, 1, 21mp2an 688 . 2 (((𝑄 “ ω)‘∅) = ( I ‘𝐼) ↔ ∅(𝑄 “ ω)( I ‘𝐼))
2319, 22mpbir 230 1 ((𝑄 “ ω)‘∅) = ( I ‘𝐼)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1541  wcel 2109  Vcvv 3430  c0 4261  cop 4572   class class class wbr 5078   I cid 5487  ran crn 5589  cres 5590  cima 5591  suc csuc 6265   Fn wfn 6425  cfv 6430  (class class class)co 7268  cmpo 7270  ωcom 7700  reccrdg 8224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225
This theorem is referenced by:  seqom0g  8271
  Copyright terms: Public domain W3C validator