| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > seqomlem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for seqω. (Contributed by Stefan O'Rear, 1-Nov-2014.) |
| Ref | Expression |
|---|---|
| seqomlem.a | ⊢ 𝑄 = rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉) |
| Ref | Expression |
|---|---|
| seqomlem3 | ⊢ ((𝑄 “ ω)‘∅) = ( I ‘𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano1 7819 | . . . . . . 7 ⊢ ∅ ∈ ω | |
| 2 | fvres 6841 | . . . . . . 7 ⊢ (∅ ∈ ω → ((𝑄 ↾ ω)‘∅) = (𝑄‘∅)) | |
| 3 | 1, 2 | ax-mp 5 | . . . . . 6 ⊢ ((𝑄 ↾ ω)‘∅) = (𝑄‘∅) |
| 4 | seqomlem.a | . . . . . . 7 ⊢ 𝑄 = rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉) | |
| 5 | 4 | fveq1i 6823 | . . . . . 6 ⊢ (𝑄‘∅) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉)‘∅) |
| 6 | opex 5402 | . . . . . . 7 ⊢ 〈∅, ( I ‘𝐼)〉 ∈ V | |
| 7 | 6 | rdg0 8340 | . . . . . 6 ⊢ (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉)‘∅) = 〈∅, ( I ‘𝐼)〉 |
| 8 | 3, 5, 7 | 3eqtri 2758 | . . . . 5 ⊢ ((𝑄 ↾ ω)‘∅) = 〈∅, ( I ‘𝐼)〉 |
| 9 | frfnom 8354 | . . . . . . 7 ⊢ (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉) ↾ ω) Fn ω | |
| 10 | 4 | reseq1i 5923 | . . . . . . . 8 ⊢ (𝑄 ↾ ω) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉) ↾ ω) |
| 11 | 10 | fneq1i 6578 | . . . . . . 7 ⊢ ((𝑄 ↾ ω) Fn ω ↔ (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉) ↾ ω) Fn ω) |
| 12 | 9, 11 | mpbir 231 | . . . . . 6 ⊢ (𝑄 ↾ ω) Fn ω |
| 13 | fnfvelrn 7013 | . . . . . 6 ⊢ (((𝑄 ↾ ω) Fn ω ∧ ∅ ∈ ω) → ((𝑄 ↾ ω)‘∅) ∈ ran (𝑄 ↾ ω)) | |
| 14 | 12, 1, 13 | mp2an 692 | . . . . 5 ⊢ ((𝑄 ↾ ω)‘∅) ∈ ran (𝑄 ↾ ω) |
| 15 | 8, 14 | eqeltrri 2828 | . . . 4 ⊢ 〈∅, ( I ‘𝐼)〉 ∈ ran (𝑄 ↾ ω) |
| 16 | df-ima 5627 | . . . 4 ⊢ (𝑄 “ ω) = ran (𝑄 ↾ ω) | |
| 17 | 15, 16 | eleqtrri 2830 | . . 3 ⊢ 〈∅, ( I ‘𝐼)〉 ∈ (𝑄 “ ω) |
| 18 | df-br 5090 | . . 3 ⊢ (∅(𝑄 “ ω)( I ‘𝐼) ↔ 〈∅, ( I ‘𝐼)〉 ∈ (𝑄 “ ω)) | |
| 19 | 17, 18 | mpbir 231 | . 2 ⊢ ∅(𝑄 “ ω)( I ‘𝐼) |
| 20 | 4 | seqomlem2 8370 | . . 3 ⊢ (𝑄 “ ω) Fn ω |
| 21 | fnbrfvb 6872 | . . 3 ⊢ (((𝑄 “ ω) Fn ω ∧ ∅ ∈ ω) → (((𝑄 “ ω)‘∅) = ( I ‘𝐼) ↔ ∅(𝑄 “ ω)( I ‘𝐼))) | |
| 22 | 20, 1, 21 | mp2an 692 | . 2 ⊢ (((𝑄 “ ω)‘∅) = ( I ‘𝐼) ↔ ∅(𝑄 “ ω)( I ‘𝐼)) |
| 23 | 19, 22 | mpbir 231 | 1 ⊢ ((𝑄 “ ω)‘∅) = ( I ‘𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4280 〈cop 4579 class class class wbr 5089 I cid 5508 ran crn 5615 ↾ cres 5616 “ cima 5617 suc csuc 6308 Fn wfn 6476 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 ωcom 7796 reccrdg 8328 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 |
| This theorem is referenced by: seqom0g 8375 |
| Copyright terms: Public domain | W3C validator |