| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > seqomlem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for seqω. (Contributed by Stefan O'Rear, 1-Nov-2014.) |
| Ref | Expression |
|---|---|
| seqomlem.a | ⊢ 𝑄 = rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉) |
| Ref | Expression |
|---|---|
| seqomlem3 | ⊢ ((𝑄 “ ω)‘∅) = ( I ‘𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano1 7878 | . . . . . . 7 ⊢ ∅ ∈ ω | |
| 2 | fvres 6891 | . . . . . . 7 ⊢ (∅ ∈ ω → ((𝑄 ↾ ω)‘∅) = (𝑄‘∅)) | |
| 3 | 1, 2 | ax-mp 5 | . . . . . 6 ⊢ ((𝑄 ↾ ω)‘∅) = (𝑄‘∅) |
| 4 | seqomlem.a | . . . . . . 7 ⊢ 𝑄 = rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉) | |
| 5 | 4 | fveq1i 6873 | . . . . . 6 ⊢ (𝑄‘∅) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉)‘∅) |
| 6 | opex 5436 | . . . . . . 7 ⊢ 〈∅, ( I ‘𝐼)〉 ∈ V | |
| 7 | 6 | rdg0 8429 | . . . . . 6 ⊢ (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉)‘∅) = 〈∅, ( I ‘𝐼)〉 |
| 8 | 3, 5, 7 | 3eqtri 2761 | . . . . 5 ⊢ ((𝑄 ↾ ω)‘∅) = 〈∅, ( I ‘𝐼)〉 |
| 9 | frfnom 8443 | . . . . . . 7 ⊢ (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉) ↾ ω) Fn ω | |
| 10 | 4 | reseq1i 5959 | . . . . . . . 8 ⊢ (𝑄 ↾ ω) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉) ↾ ω) |
| 11 | 10 | fneq1i 6631 | . . . . . . 7 ⊢ ((𝑄 ↾ ω) Fn ω ↔ (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉) ↾ ω) Fn ω) |
| 12 | 9, 11 | mpbir 231 | . . . . . 6 ⊢ (𝑄 ↾ ω) Fn ω |
| 13 | fnfvelrn 7066 | . . . . . 6 ⊢ (((𝑄 ↾ ω) Fn ω ∧ ∅ ∈ ω) → ((𝑄 ↾ ω)‘∅) ∈ ran (𝑄 ↾ ω)) | |
| 14 | 12, 1, 13 | mp2an 692 | . . . . 5 ⊢ ((𝑄 ↾ ω)‘∅) ∈ ran (𝑄 ↾ ω) |
| 15 | 8, 14 | eqeltrri 2830 | . . . 4 ⊢ 〈∅, ( I ‘𝐼)〉 ∈ ran (𝑄 ↾ ω) |
| 16 | df-ima 5664 | . . . 4 ⊢ (𝑄 “ ω) = ran (𝑄 ↾ ω) | |
| 17 | 15, 16 | eleqtrri 2832 | . . 3 ⊢ 〈∅, ( I ‘𝐼)〉 ∈ (𝑄 “ ω) |
| 18 | df-br 5117 | . . 3 ⊢ (∅(𝑄 “ ω)( I ‘𝐼) ↔ 〈∅, ( I ‘𝐼)〉 ∈ (𝑄 “ ω)) | |
| 19 | 17, 18 | mpbir 231 | . 2 ⊢ ∅(𝑄 “ ω)( I ‘𝐼) |
| 20 | 4 | seqomlem2 8459 | . . 3 ⊢ (𝑄 “ ω) Fn ω |
| 21 | fnbrfvb 6925 | . . 3 ⊢ (((𝑄 “ ω) Fn ω ∧ ∅ ∈ ω) → (((𝑄 “ ω)‘∅) = ( I ‘𝐼) ↔ ∅(𝑄 “ ω)( I ‘𝐼))) | |
| 22 | 20, 1, 21 | mp2an 692 | . 2 ⊢ (((𝑄 “ ω)‘∅) = ( I ‘𝐼) ↔ ∅(𝑄 “ ω)( I ‘𝐼)) |
| 23 | 19, 22 | mpbir 231 | 1 ⊢ ((𝑄 “ ω)‘∅) = ( I ‘𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1539 ∈ wcel 2107 Vcvv 3457 ∅c0 4306 〈cop 4605 class class class wbr 5116 I cid 5544 ran crn 5652 ↾ cres 5653 “ cima 5654 suc csuc 6351 Fn wfn 6522 ‘cfv 6527 (class class class)co 7399 ∈ cmpo 7401 ωcom 7855 reccrdg 8417 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pr 5399 ax-un 7723 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-ov 7402 df-oprab 7403 df-mpo 7404 df-om 7856 df-2nd 7983 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 |
| This theorem is referenced by: seqom0g 8464 |
| Copyright terms: Public domain | W3C validator |