| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > seqomlem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for seqω. (Contributed by Stefan O'Rear, 1-Nov-2014.) |
| Ref | Expression |
|---|---|
| seqomlem.a | ⊢ 𝑄 = rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉) |
| Ref | Expression |
|---|---|
| seqomlem3 | ⊢ ((𝑄 “ ω)‘∅) = ( I ‘𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano1 7873 | . . . . . . 7 ⊢ ∅ ∈ ω | |
| 2 | fvres 6884 | . . . . . . 7 ⊢ (∅ ∈ ω → ((𝑄 ↾ ω)‘∅) = (𝑄‘∅)) | |
| 3 | 1, 2 | ax-mp 5 | . . . . . 6 ⊢ ((𝑄 ↾ ω)‘∅) = (𝑄‘∅) |
| 4 | seqomlem.a | . . . . . . 7 ⊢ 𝑄 = rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉) | |
| 5 | 4 | fveq1i 6866 | . . . . . 6 ⊢ (𝑄‘∅) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉)‘∅) |
| 6 | opex 5432 | . . . . . . 7 ⊢ 〈∅, ( I ‘𝐼)〉 ∈ V | |
| 7 | 6 | rdg0 8398 | . . . . . 6 ⊢ (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉)‘∅) = 〈∅, ( I ‘𝐼)〉 |
| 8 | 3, 5, 7 | 3eqtri 2757 | . . . . 5 ⊢ ((𝑄 ↾ ω)‘∅) = 〈∅, ( I ‘𝐼)〉 |
| 9 | frfnom 8412 | . . . . . . 7 ⊢ (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉) ↾ ω) Fn ω | |
| 10 | 4 | reseq1i 5954 | . . . . . . . 8 ⊢ (𝑄 ↾ ω) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉) ↾ ω) |
| 11 | 10 | fneq1i 6623 | . . . . . . 7 ⊢ ((𝑄 ↾ ω) Fn ω ↔ (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉) ↾ ω) Fn ω) |
| 12 | 9, 11 | mpbir 231 | . . . . . 6 ⊢ (𝑄 ↾ ω) Fn ω |
| 13 | fnfvelrn 7059 | . . . . . 6 ⊢ (((𝑄 ↾ ω) Fn ω ∧ ∅ ∈ ω) → ((𝑄 ↾ ω)‘∅) ∈ ran (𝑄 ↾ ω)) | |
| 14 | 12, 1, 13 | mp2an 692 | . . . . 5 ⊢ ((𝑄 ↾ ω)‘∅) ∈ ran (𝑄 ↾ ω) |
| 15 | 8, 14 | eqeltrri 2826 | . . . 4 ⊢ 〈∅, ( I ‘𝐼)〉 ∈ ran (𝑄 ↾ ω) |
| 16 | df-ima 5659 | . . . 4 ⊢ (𝑄 “ ω) = ran (𝑄 ↾ ω) | |
| 17 | 15, 16 | eleqtrri 2828 | . . 3 ⊢ 〈∅, ( I ‘𝐼)〉 ∈ (𝑄 “ ω) |
| 18 | df-br 5116 | . . 3 ⊢ (∅(𝑄 “ ω)( I ‘𝐼) ↔ 〈∅, ( I ‘𝐼)〉 ∈ (𝑄 “ ω)) | |
| 19 | 17, 18 | mpbir 231 | . 2 ⊢ ∅(𝑄 “ ω)( I ‘𝐼) |
| 20 | 4 | seqomlem2 8428 | . . 3 ⊢ (𝑄 “ ω) Fn ω |
| 21 | fnbrfvb 6918 | . . 3 ⊢ (((𝑄 “ ω) Fn ω ∧ ∅ ∈ ω) → (((𝑄 “ ω)‘∅) = ( I ‘𝐼) ↔ ∅(𝑄 “ ω)( I ‘𝐼))) | |
| 22 | 20, 1, 21 | mp2an 692 | . 2 ⊢ (((𝑄 “ ω)‘∅) = ( I ‘𝐼) ↔ ∅(𝑄 “ ω)( I ‘𝐼)) |
| 23 | 19, 22 | mpbir 231 | 1 ⊢ ((𝑄 “ ω)‘∅) = ( I ‘𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3455 ∅c0 4304 〈cop 4603 class class class wbr 5115 I cid 5540 ran crn 5647 ↾ cres 5648 “ cima 5649 suc csuc 6342 Fn wfn 6514 ‘cfv 6519 (class class class)co 7394 ∈ cmpo 7396 ωcom 7850 reccrdg 8386 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 |
| This theorem is referenced by: seqom0g 8433 |
| Copyright terms: Public domain | W3C validator |