![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cantnfsuc | Structured version Visualization version GIF version |
Description: The value of the recursive function 𝐻 at a successor. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.) |
Ref | Expression |
---|---|
cantnfs.s | ⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
cantnfs.a | ⊢ (𝜑 → 𝐴 ∈ On) |
cantnfs.b | ⊢ (𝜑 → 𝐵 ∈ On) |
cantnfcl.g | ⊢ 𝐺 = OrdIso( E , (𝐹 supp ∅)) |
cantnfcl.f | ⊢ (𝜑 → 𝐹 ∈ 𝑆) |
cantnfval.h | ⊢ 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧)), ∅) |
Ref | Expression |
---|---|
cantnfsuc | ⊢ ((𝜑 ∧ 𝐾 ∈ ω) → (𝐻‘suc 𝐾) = (((𝐴 ↑o (𝐺‘𝐾)) ·o (𝐹‘(𝐺‘𝐾))) +o (𝐻‘𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cantnfval.h | . . . 4 ⊢ 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧)), ∅) | |
2 | 1 | seqomsuc 8452 | . . 3 ⊢ (𝐾 ∈ ω → (𝐻‘suc 𝐾) = (𝐾(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧))(𝐻‘𝐾))) |
3 | 2 | adantl 483 | . 2 ⊢ ((𝜑 ∧ 𝐾 ∈ ω) → (𝐻‘suc 𝐾) = (𝐾(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧))(𝐻‘𝐾))) |
4 | elex 3493 | . . . 4 ⊢ (𝐾 ∈ ω → 𝐾 ∈ V) | |
5 | 4 | adantl 483 | . . 3 ⊢ ((𝜑 ∧ 𝐾 ∈ ω) → 𝐾 ∈ V) |
6 | fvex 6901 | . . 3 ⊢ (𝐻‘𝐾) ∈ V | |
7 | simpl 484 | . . . . . . . 8 ⊢ ((𝑢 = 𝐾 ∧ 𝑣 = (𝐻‘𝐾)) → 𝑢 = 𝐾) | |
8 | 7 | fveq2d 6892 | . . . . . . 7 ⊢ ((𝑢 = 𝐾 ∧ 𝑣 = (𝐻‘𝐾)) → (𝐺‘𝑢) = (𝐺‘𝐾)) |
9 | 8 | oveq2d 7420 | . . . . . 6 ⊢ ((𝑢 = 𝐾 ∧ 𝑣 = (𝐻‘𝐾)) → (𝐴 ↑o (𝐺‘𝑢)) = (𝐴 ↑o (𝐺‘𝐾))) |
10 | 8 | fveq2d 6892 | . . . . . 6 ⊢ ((𝑢 = 𝐾 ∧ 𝑣 = (𝐻‘𝐾)) → (𝐹‘(𝐺‘𝑢)) = (𝐹‘(𝐺‘𝐾))) |
11 | 9, 10 | oveq12d 7422 | . . . . 5 ⊢ ((𝑢 = 𝐾 ∧ 𝑣 = (𝐻‘𝐾)) → ((𝐴 ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) = ((𝐴 ↑o (𝐺‘𝐾)) ·o (𝐹‘(𝐺‘𝐾)))) |
12 | simpr 486 | . . . . 5 ⊢ ((𝑢 = 𝐾 ∧ 𝑣 = (𝐻‘𝐾)) → 𝑣 = (𝐻‘𝐾)) | |
13 | 11, 12 | oveq12d 7422 | . . . 4 ⊢ ((𝑢 = 𝐾 ∧ 𝑣 = (𝐻‘𝐾)) → (((𝐴 ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) +o 𝑣) = (((𝐴 ↑o (𝐺‘𝐾)) ·o (𝐹‘(𝐺‘𝐾))) +o (𝐻‘𝐾))) |
14 | fveq2 6888 | . . . . . . . 8 ⊢ (𝑘 = 𝑢 → (𝐺‘𝑘) = (𝐺‘𝑢)) | |
15 | 14 | oveq2d 7420 | . . . . . . 7 ⊢ (𝑘 = 𝑢 → (𝐴 ↑o (𝐺‘𝑘)) = (𝐴 ↑o (𝐺‘𝑢))) |
16 | 14 | fveq2d 6892 | . . . . . . 7 ⊢ (𝑘 = 𝑢 → (𝐹‘(𝐺‘𝑘)) = (𝐹‘(𝐺‘𝑢))) |
17 | 15, 16 | oveq12d 7422 | . . . . . 6 ⊢ (𝑘 = 𝑢 → ((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) = ((𝐴 ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢)))) |
18 | 17 | oveq1d 7419 | . . . . 5 ⊢ (𝑘 = 𝑢 → (((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧) = (((𝐴 ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) +o 𝑧)) |
19 | oveq2 7412 | . . . . 5 ⊢ (𝑧 = 𝑣 → (((𝐴 ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) +o 𝑧) = (((𝐴 ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) +o 𝑣)) | |
20 | 18, 19 | cbvmpov 7499 | . . . 4 ⊢ (𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧)) = (𝑢 ∈ V, 𝑣 ∈ V ↦ (((𝐴 ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) +o 𝑣)) |
21 | ovex 7437 | . . . 4 ⊢ (((𝐴 ↑o (𝐺‘𝐾)) ·o (𝐹‘(𝐺‘𝐾))) +o (𝐻‘𝐾)) ∈ V | |
22 | 13, 20, 21 | ovmpoa 7558 | . . 3 ⊢ ((𝐾 ∈ V ∧ (𝐻‘𝐾) ∈ V) → (𝐾(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧))(𝐻‘𝐾)) = (((𝐴 ↑o (𝐺‘𝐾)) ·o (𝐹‘(𝐺‘𝐾))) +o (𝐻‘𝐾))) |
23 | 5, 6, 22 | sylancl 587 | . 2 ⊢ ((𝜑 ∧ 𝐾 ∈ ω) → (𝐾(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧))(𝐻‘𝐾)) = (((𝐴 ↑o (𝐺‘𝐾)) ·o (𝐹‘(𝐺‘𝐾))) +o (𝐻‘𝐾))) |
24 | 3, 23 | eqtrd 2773 | 1 ⊢ ((𝜑 ∧ 𝐾 ∈ ω) → (𝐻‘suc 𝐾) = (((𝐴 ↑o (𝐺‘𝐾)) ·o (𝐹‘(𝐺‘𝐾))) +o (𝐻‘𝐾))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ∅c0 4321 E cep 5578 dom cdm 5675 Oncon0 6361 suc csuc 6363 ‘cfv 6540 (class class class)co 7404 ∈ cmpo 7406 ωcom 7850 supp csupp 8141 seqωcseqom 8442 +o coa 8458 ·o comu 8459 ↑o coe 8460 OrdIsocoi 9500 CNF ccnf 9652 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7720 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7851 df-2nd 7971 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-seqom 8443 |
This theorem is referenced by: cantnfle 9662 cantnflt 9663 cantnfp1lem3 9671 cantnflem1d 9679 cantnflem1 9680 cnfcomlem 9690 |
Copyright terms: Public domain | W3C validator |