Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cantnfsuc | Structured version Visualization version GIF version |
Description: The value of the recursive function 𝐻 at a successor. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.) |
Ref | Expression |
---|---|
cantnfs.s | ⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
cantnfs.a | ⊢ (𝜑 → 𝐴 ∈ On) |
cantnfs.b | ⊢ (𝜑 → 𝐵 ∈ On) |
cantnfcl.g | ⊢ 𝐺 = OrdIso( E , (𝐹 supp ∅)) |
cantnfcl.f | ⊢ (𝜑 → 𝐹 ∈ 𝑆) |
cantnfval.h | ⊢ 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧)), ∅) |
Ref | Expression |
---|---|
cantnfsuc | ⊢ ((𝜑 ∧ 𝐾 ∈ ω) → (𝐻‘suc 𝐾) = (((𝐴 ↑o (𝐺‘𝐾)) ·o (𝐹‘(𝐺‘𝐾))) +o (𝐻‘𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cantnfval.h | . . . 4 ⊢ 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧)), ∅) | |
2 | 1 | seqomsuc 8125 | . . 3 ⊢ (𝐾 ∈ ω → (𝐻‘suc 𝐾) = (𝐾(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧))(𝐻‘𝐾))) |
3 | 2 | adantl 485 | . 2 ⊢ ((𝜑 ∧ 𝐾 ∈ ω) → (𝐻‘suc 𝐾) = (𝐾(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧))(𝐻‘𝐾))) |
4 | elex 3417 | . . . 4 ⊢ (𝐾 ∈ ω → 𝐾 ∈ V) | |
5 | 4 | adantl 485 | . . 3 ⊢ ((𝜑 ∧ 𝐾 ∈ ω) → 𝐾 ∈ V) |
6 | fvex 6690 | . . 3 ⊢ (𝐻‘𝐾) ∈ V | |
7 | simpl 486 | . . . . . . . 8 ⊢ ((𝑢 = 𝐾 ∧ 𝑣 = (𝐻‘𝐾)) → 𝑢 = 𝐾) | |
8 | 7 | fveq2d 6681 | . . . . . . 7 ⊢ ((𝑢 = 𝐾 ∧ 𝑣 = (𝐻‘𝐾)) → (𝐺‘𝑢) = (𝐺‘𝐾)) |
9 | 8 | oveq2d 7189 | . . . . . 6 ⊢ ((𝑢 = 𝐾 ∧ 𝑣 = (𝐻‘𝐾)) → (𝐴 ↑o (𝐺‘𝑢)) = (𝐴 ↑o (𝐺‘𝐾))) |
10 | 8 | fveq2d 6681 | . . . . . 6 ⊢ ((𝑢 = 𝐾 ∧ 𝑣 = (𝐻‘𝐾)) → (𝐹‘(𝐺‘𝑢)) = (𝐹‘(𝐺‘𝐾))) |
11 | 9, 10 | oveq12d 7191 | . . . . 5 ⊢ ((𝑢 = 𝐾 ∧ 𝑣 = (𝐻‘𝐾)) → ((𝐴 ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) = ((𝐴 ↑o (𝐺‘𝐾)) ·o (𝐹‘(𝐺‘𝐾)))) |
12 | simpr 488 | . . . . 5 ⊢ ((𝑢 = 𝐾 ∧ 𝑣 = (𝐻‘𝐾)) → 𝑣 = (𝐻‘𝐾)) | |
13 | 11, 12 | oveq12d 7191 | . . . 4 ⊢ ((𝑢 = 𝐾 ∧ 𝑣 = (𝐻‘𝐾)) → (((𝐴 ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) +o 𝑣) = (((𝐴 ↑o (𝐺‘𝐾)) ·o (𝐹‘(𝐺‘𝐾))) +o (𝐻‘𝐾))) |
14 | fveq2 6677 | . . . . . . . 8 ⊢ (𝑘 = 𝑢 → (𝐺‘𝑘) = (𝐺‘𝑢)) | |
15 | 14 | oveq2d 7189 | . . . . . . 7 ⊢ (𝑘 = 𝑢 → (𝐴 ↑o (𝐺‘𝑘)) = (𝐴 ↑o (𝐺‘𝑢))) |
16 | 14 | fveq2d 6681 | . . . . . . 7 ⊢ (𝑘 = 𝑢 → (𝐹‘(𝐺‘𝑘)) = (𝐹‘(𝐺‘𝑢))) |
17 | 15, 16 | oveq12d 7191 | . . . . . 6 ⊢ (𝑘 = 𝑢 → ((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) = ((𝐴 ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢)))) |
18 | 17 | oveq1d 7188 | . . . . 5 ⊢ (𝑘 = 𝑢 → (((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧) = (((𝐴 ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) +o 𝑧)) |
19 | oveq2 7181 | . . . . 5 ⊢ (𝑧 = 𝑣 → (((𝐴 ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) +o 𝑧) = (((𝐴 ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) +o 𝑣)) | |
20 | 18, 19 | cbvmpov 7266 | . . . 4 ⊢ (𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧)) = (𝑢 ∈ V, 𝑣 ∈ V ↦ (((𝐴 ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) +o 𝑣)) |
21 | ovex 7206 | . . . 4 ⊢ (((𝐴 ↑o (𝐺‘𝐾)) ·o (𝐹‘(𝐺‘𝐾))) +o (𝐻‘𝐾)) ∈ V | |
22 | 13, 20, 21 | ovmpoa 7323 | . . 3 ⊢ ((𝐾 ∈ V ∧ (𝐻‘𝐾) ∈ V) → (𝐾(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧))(𝐻‘𝐾)) = (((𝐴 ↑o (𝐺‘𝐾)) ·o (𝐹‘(𝐺‘𝐾))) +o (𝐻‘𝐾))) |
23 | 5, 6, 22 | sylancl 589 | . 2 ⊢ ((𝜑 ∧ 𝐾 ∈ ω) → (𝐾(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧))(𝐻‘𝐾)) = (((𝐴 ↑o (𝐺‘𝐾)) ·o (𝐹‘(𝐺‘𝐾))) +o (𝐻‘𝐾))) |
24 | 3, 23 | eqtrd 2774 | 1 ⊢ ((𝜑 ∧ 𝐾 ∈ ω) → (𝐻‘suc 𝐾) = (((𝐴 ↑o (𝐺‘𝐾)) ·o (𝐹‘(𝐺‘𝐾))) +o (𝐻‘𝐾))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 Vcvv 3399 ∅c0 4212 E cep 5434 dom cdm 5526 Oncon0 6173 suc csuc 6175 ‘cfv 6340 (class class class)co 7173 ∈ cmpo 7175 ωcom 7602 supp csupp 7859 seqωcseqom 8115 +o coa 8131 ·o comu 8132 ↑o coe 8133 OrdIsocoi 9049 CNF ccnf 9200 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5168 ax-nul 5175 ax-pr 5297 ax-un 7482 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-ral 3059 df-rex 3060 df-reu 3061 df-rab 3063 df-v 3401 df-sbc 3682 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-pss 3863 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-tp 4522 df-op 4524 df-uni 4798 df-iun 4884 df-br 5032 df-opab 5094 df-mpt 5112 df-tr 5138 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5484 df-we 5486 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-ov 7176 df-oprab 7177 df-mpo 7178 df-om 7603 df-2nd 7718 df-wrecs 7979 df-recs 8040 df-rdg 8078 df-seqom 8116 |
This theorem is referenced by: cantnfle 9210 cantnflt 9211 cantnfp1lem3 9219 cantnflem1d 9227 cantnflem1 9228 cnfcomlem 9238 |
Copyright terms: Public domain | W3C validator |