| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cantnfsuc | Structured version Visualization version GIF version | ||
| Description: The value of the recursive function 𝐻 at a successor. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.) |
| Ref | Expression |
|---|---|
| cantnfs.s | ⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
| cantnfs.a | ⊢ (𝜑 → 𝐴 ∈ On) |
| cantnfs.b | ⊢ (𝜑 → 𝐵 ∈ On) |
| cantnfcl.g | ⊢ 𝐺 = OrdIso( E , (𝐹 supp ∅)) |
| cantnfcl.f | ⊢ (𝜑 → 𝐹 ∈ 𝑆) |
| cantnfval.h | ⊢ 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧)), ∅) |
| Ref | Expression |
|---|---|
| cantnfsuc | ⊢ ((𝜑 ∧ 𝐾 ∈ ω) → (𝐻‘suc 𝐾) = (((𝐴 ↑o (𝐺‘𝐾)) ·o (𝐹‘(𝐺‘𝐾))) +o (𝐻‘𝐾))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfval.h | . . . 4 ⊢ 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧)), ∅) | |
| 2 | 1 | seqomsuc 8479 | . . 3 ⊢ (𝐾 ∈ ω → (𝐻‘suc 𝐾) = (𝐾(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧))(𝐻‘𝐾))) |
| 3 | 2 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝐾 ∈ ω) → (𝐻‘suc 𝐾) = (𝐾(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧))(𝐻‘𝐾))) |
| 4 | elex 3484 | . . . 4 ⊢ (𝐾 ∈ ω → 𝐾 ∈ V) | |
| 5 | 4 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝐾 ∈ ω) → 𝐾 ∈ V) |
| 6 | fvex 6899 | . . 3 ⊢ (𝐻‘𝐾) ∈ V | |
| 7 | simpl 482 | . . . . . . . 8 ⊢ ((𝑢 = 𝐾 ∧ 𝑣 = (𝐻‘𝐾)) → 𝑢 = 𝐾) | |
| 8 | 7 | fveq2d 6890 | . . . . . . 7 ⊢ ((𝑢 = 𝐾 ∧ 𝑣 = (𝐻‘𝐾)) → (𝐺‘𝑢) = (𝐺‘𝐾)) |
| 9 | 8 | oveq2d 7429 | . . . . . 6 ⊢ ((𝑢 = 𝐾 ∧ 𝑣 = (𝐻‘𝐾)) → (𝐴 ↑o (𝐺‘𝑢)) = (𝐴 ↑o (𝐺‘𝐾))) |
| 10 | 8 | fveq2d 6890 | . . . . . 6 ⊢ ((𝑢 = 𝐾 ∧ 𝑣 = (𝐻‘𝐾)) → (𝐹‘(𝐺‘𝑢)) = (𝐹‘(𝐺‘𝐾))) |
| 11 | 9, 10 | oveq12d 7431 | . . . . 5 ⊢ ((𝑢 = 𝐾 ∧ 𝑣 = (𝐻‘𝐾)) → ((𝐴 ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) = ((𝐴 ↑o (𝐺‘𝐾)) ·o (𝐹‘(𝐺‘𝐾)))) |
| 12 | simpr 484 | . . . . 5 ⊢ ((𝑢 = 𝐾 ∧ 𝑣 = (𝐻‘𝐾)) → 𝑣 = (𝐻‘𝐾)) | |
| 13 | 11, 12 | oveq12d 7431 | . . . 4 ⊢ ((𝑢 = 𝐾 ∧ 𝑣 = (𝐻‘𝐾)) → (((𝐴 ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) +o 𝑣) = (((𝐴 ↑o (𝐺‘𝐾)) ·o (𝐹‘(𝐺‘𝐾))) +o (𝐻‘𝐾))) |
| 14 | fveq2 6886 | . . . . . . . 8 ⊢ (𝑘 = 𝑢 → (𝐺‘𝑘) = (𝐺‘𝑢)) | |
| 15 | 14 | oveq2d 7429 | . . . . . . 7 ⊢ (𝑘 = 𝑢 → (𝐴 ↑o (𝐺‘𝑘)) = (𝐴 ↑o (𝐺‘𝑢))) |
| 16 | 14 | fveq2d 6890 | . . . . . . 7 ⊢ (𝑘 = 𝑢 → (𝐹‘(𝐺‘𝑘)) = (𝐹‘(𝐺‘𝑢))) |
| 17 | 15, 16 | oveq12d 7431 | . . . . . 6 ⊢ (𝑘 = 𝑢 → ((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) = ((𝐴 ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢)))) |
| 18 | 17 | oveq1d 7428 | . . . . 5 ⊢ (𝑘 = 𝑢 → (((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧) = (((𝐴 ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) +o 𝑧)) |
| 19 | oveq2 7421 | . . . . 5 ⊢ (𝑧 = 𝑣 → (((𝐴 ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) +o 𝑧) = (((𝐴 ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) +o 𝑣)) | |
| 20 | 18, 19 | cbvmpov 7510 | . . . 4 ⊢ (𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧)) = (𝑢 ∈ V, 𝑣 ∈ V ↦ (((𝐴 ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) +o 𝑣)) |
| 21 | ovex 7446 | . . . 4 ⊢ (((𝐴 ↑o (𝐺‘𝐾)) ·o (𝐹‘(𝐺‘𝐾))) +o (𝐻‘𝐾)) ∈ V | |
| 22 | 13, 20, 21 | ovmpoa 7570 | . . 3 ⊢ ((𝐾 ∈ V ∧ (𝐻‘𝐾) ∈ V) → (𝐾(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧))(𝐻‘𝐾)) = (((𝐴 ↑o (𝐺‘𝐾)) ·o (𝐹‘(𝐺‘𝐾))) +o (𝐻‘𝐾))) |
| 23 | 5, 6, 22 | sylancl 586 | . 2 ⊢ ((𝜑 ∧ 𝐾 ∈ ω) → (𝐾(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧))(𝐻‘𝐾)) = (((𝐴 ↑o (𝐺‘𝐾)) ·o (𝐹‘(𝐺‘𝐾))) +o (𝐻‘𝐾))) |
| 24 | 3, 23 | eqtrd 2769 | 1 ⊢ ((𝜑 ∧ 𝐾 ∈ ω) → (𝐻‘suc 𝐾) = (((𝐴 ↑o (𝐺‘𝐾)) ·o (𝐹‘(𝐺‘𝐾))) +o (𝐻‘𝐾))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ∅c0 4313 E cep 5563 dom cdm 5665 Oncon0 6363 suc csuc 6365 ‘cfv 6541 (class class class)co 7413 ∈ cmpo 7415 ωcom 7869 supp csupp 8167 seqωcseqom 8469 +o coa 8485 ·o comu 8486 ↑o coe 8487 OrdIsocoi 9531 CNF ccnf 9683 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-seqom 8470 |
| This theorem is referenced by: cantnfle 9693 cantnflt 9694 cantnfp1lem3 9702 cantnflem1d 9710 cantnflem1 9711 cnfcomlem 9721 |
| Copyright terms: Public domain | W3C validator |