MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfsuc Structured version   Visualization version   GIF version

Theorem cantnfsuc 9555
Description: The value of the recursive function 𝐻 at a successor. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfcl.g 𝐺 = OrdIso( E , (𝐹 supp ∅))
cantnfcl.f (𝜑𝐹𝑆)
cantnfval.h 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)
Assertion
Ref Expression
cantnfsuc ((𝜑𝐾 ∈ ω) → (𝐻‘suc 𝐾) = (((𝐴o (𝐺𝐾)) ·o (𝐹‘(𝐺𝐾))) +o (𝐻𝐾)))
Distinct variable groups:   𝑧,𝑘,𝐵   𝐴,𝑘,𝑧   𝑘,𝐹,𝑧   𝑆,𝑘,𝑧   𝑘,𝐺,𝑧   𝑘,𝐾,𝑧   𝜑,𝑘,𝑧
Allowed substitution hints:   𝐻(𝑧,𝑘)

Proof of Theorem cantnfsuc
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfval.h . . . 4 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)
21seqomsuc 8371 . . 3 (𝐾 ∈ ω → (𝐻‘suc 𝐾) = (𝐾(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))(𝐻𝐾)))
32adantl 481 . 2 ((𝜑𝐾 ∈ ω) → (𝐻‘suc 𝐾) = (𝐾(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))(𝐻𝐾)))
4 elex 3457 . . . 4 (𝐾 ∈ ω → 𝐾 ∈ V)
54adantl 481 . . 3 ((𝜑𝐾 ∈ ω) → 𝐾 ∈ V)
6 fvex 6830 . . 3 (𝐻𝐾) ∈ V
7 simpl 482 . . . . . . . 8 ((𝑢 = 𝐾𝑣 = (𝐻𝐾)) → 𝑢 = 𝐾)
87fveq2d 6821 . . . . . . 7 ((𝑢 = 𝐾𝑣 = (𝐻𝐾)) → (𝐺𝑢) = (𝐺𝐾))
98oveq2d 7357 . . . . . 6 ((𝑢 = 𝐾𝑣 = (𝐻𝐾)) → (𝐴o (𝐺𝑢)) = (𝐴o (𝐺𝐾)))
108fveq2d 6821 . . . . . 6 ((𝑢 = 𝐾𝑣 = (𝐻𝐾)) → (𝐹‘(𝐺𝑢)) = (𝐹‘(𝐺𝐾)))
119, 10oveq12d 7359 . . . . 5 ((𝑢 = 𝐾𝑣 = (𝐻𝐾)) → ((𝐴o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) = ((𝐴o (𝐺𝐾)) ·o (𝐹‘(𝐺𝐾))))
12 simpr 484 . . . . 5 ((𝑢 = 𝐾𝑣 = (𝐻𝐾)) → 𝑣 = (𝐻𝐾))
1311, 12oveq12d 7359 . . . 4 ((𝑢 = 𝐾𝑣 = (𝐻𝐾)) → (((𝐴o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) +o 𝑣) = (((𝐴o (𝐺𝐾)) ·o (𝐹‘(𝐺𝐾))) +o (𝐻𝐾)))
14 fveq2 6817 . . . . . . . 8 (𝑘 = 𝑢 → (𝐺𝑘) = (𝐺𝑢))
1514oveq2d 7357 . . . . . . 7 (𝑘 = 𝑢 → (𝐴o (𝐺𝑘)) = (𝐴o (𝐺𝑢)))
1614fveq2d 6821 . . . . . . 7 (𝑘 = 𝑢 → (𝐹‘(𝐺𝑘)) = (𝐹‘(𝐺𝑢)))
1715, 16oveq12d 7359 . . . . . 6 (𝑘 = 𝑢 → ((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) = ((𝐴o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))))
1817oveq1d 7356 . . . . 5 (𝑘 = 𝑢 → (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧) = (((𝐴o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) +o 𝑧))
19 oveq2 7349 . . . . 5 (𝑧 = 𝑣 → (((𝐴o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) +o 𝑧) = (((𝐴o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) +o 𝑣))
2018, 19cbvmpov 7436 . . . 4 (𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)) = (𝑢 ∈ V, 𝑣 ∈ V ↦ (((𝐴o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) +o 𝑣))
21 ovex 7374 . . . 4 (((𝐴o (𝐺𝐾)) ·o (𝐹‘(𝐺𝐾))) +o (𝐻𝐾)) ∈ V
2213, 20, 21ovmpoa 7496 . . 3 ((𝐾 ∈ V ∧ (𝐻𝐾) ∈ V) → (𝐾(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))(𝐻𝐾)) = (((𝐴o (𝐺𝐾)) ·o (𝐹‘(𝐺𝐾))) +o (𝐻𝐾)))
235, 6, 22sylancl 586 . 2 ((𝜑𝐾 ∈ ω) → (𝐾(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))(𝐻𝐾)) = (((𝐴o (𝐺𝐾)) ·o (𝐹‘(𝐺𝐾))) +o (𝐻𝐾)))
243, 23eqtrd 2766 1 ((𝜑𝐾 ∈ ω) → (𝐻‘suc 𝐾) = (((𝐴o (𝐺𝐾)) ·o (𝐹‘(𝐺𝐾))) +o (𝐻𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  c0 4278   E cep 5510  dom cdm 5611  Oncon0 6301  suc csuc 6303  cfv 6476  (class class class)co 7341  cmpo 7343  ωcom 7791   supp csupp 8085  seqωcseqom 8361   +o coa 8377   ·o comu 8378  o coe 8379  OrdIsocoi 9390   CNF ccnf 9546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-seqom 8362
This theorem is referenced by:  cantnfle  9556  cantnflt  9557  cantnfp1lem3  9565  cantnflem1d  9573  cantnflem1  9574  cnfcomlem  9584
  Copyright terms: Public domain W3C validator