MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfsuc Structured version   Visualization version   GIF version

Theorem cantnfsuc 9571
Description: The value of the recursive function 𝐻 at a successor. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfcl.g 𝐺 = OrdIso( E , (𝐹 supp ∅))
cantnfcl.f (𝜑𝐹𝑆)
cantnfval.h 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)
Assertion
Ref Expression
cantnfsuc ((𝜑𝐾 ∈ ω) → (𝐻‘suc 𝐾) = (((𝐴o (𝐺𝐾)) ·o (𝐹‘(𝐺𝐾))) +o (𝐻𝐾)))
Distinct variable groups:   𝑧,𝑘,𝐵   𝐴,𝑘,𝑧   𝑘,𝐹,𝑧   𝑆,𝑘,𝑧   𝑘,𝐺,𝑧   𝑘,𝐾,𝑧   𝜑,𝑘,𝑧
Allowed substitution hints:   𝐻(𝑧,𝑘)

Proof of Theorem cantnfsuc
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfval.h . . . 4 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)
21seqomsuc 8385 . . 3 (𝐾 ∈ ω → (𝐻‘suc 𝐾) = (𝐾(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))(𝐻𝐾)))
32adantl 481 . 2 ((𝜑𝐾 ∈ ω) → (𝐻‘suc 𝐾) = (𝐾(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))(𝐻𝐾)))
4 elex 3458 . . . 4 (𝐾 ∈ ω → 𝐾 ∈ V)
54adantl 481 . . 3 ((𝜑𝐾 ∈ ω) → 𝐾 ∈ V)
6 fvex 6844 . . 3 (𝐻𝐾) ∈ V
7 simpl 482 . . . . . . . 8 ((𝑢 = 𝐾𝑣 = (𝐻𝐾)) → 𝑢 = 𝐾)
87fveq2d 6835 . . . . . . 7 ((𝑢 = 𝐾𝑣 = (𝐻𝐾)) → (𝐺𝑢) = (𝐺𝐾))
98oveq2d 7371 . . . . . 6 ((𝑢 = 𝐾𝑣 = (𝐻𝐾)) → (𝐴o (𝐺𝑢)) = (𝐴o (𝐺𝐾)))
108fveq2d 6835 . . . . . 6 ((𝑢 = 𝐾𝑣 = (𝐻𝐾)) → (𝐹‘(𝐺𝑢)) = (𝐹‘(𝐺𝐾)))
119, 10oveq12d 7373 . . . . 5 ((𝑢 = 𝐾𝑣 = (𝐻𝐾)) → ((𝐴o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) = ((𝐴o (𝐺𝐾)) ·o (𝐹‘(𝐺𝐾))))
12 simpr 484 . . . . 5 ((𝑢 = 𝐾𝑣 = (𝐻𝐾)) → 𝑣 = (𝐻𝐾))
1311, 12oveq12d 7373 . . . 4 ((𝑢 = 𝐾𝑣 = (𝐻𝐾)) → (((𝐴o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) +o 𝑣) = (((𝐴o (𝐺𝐾)) ·o (𝐹‘(𝐺𝐾))) +o (𝐻𝐾)))
14 fveq2 6831 . . . . . . . 8 (𝑘 = 𝑢 → (𝐺𝑘) = (𝐺𝑢))
1514oveq2d 7371 . . . . . . 7 (𝑘 = 𝑢 → (𝐴o (𝐺𝑘)) = (𝐴o (𝐺𝑢)))
1614fveq2d 6835 . . . . . . 7 (𝑘 = 𝑢 → (𝐹‘(𝐺𝑘)) = (𝐹‘(𝐺𝑢)))
1715, 16oveq12d 7373 . . . . . 6 (𝑘 = 𝑢 → ((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) = ((𝐴o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))))
1817oveq1d 7370 . . . . 5 (𝑘 = 𝑢 → (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧) = (((𝐴o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) +o 𝑧))
19 oveq2 7363 . . . . 5 (𝑧 = 𝑣 → (((𝐴o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) +o 𝑧) = (((𝐴o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) +o 𝑣))
2018, 19cbvmpov 7450 . . . 4 (𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)) = (𝑢 ∈ V, 𝑣 ∈ V ↦ (((𝐴o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) +o 𝑣))
21 ovex 7388 . . . 4 (((𝐴o (𝐺𝐾)) ·o (𝐹‘(𝐺𝐾))) +o (𝐻𝐾)) ∈ V
2213, 20, 21ovmpoa 7510 . . 3 ((𝐾 ∈ V ∧ (𝐻𝐾) ∈ V) → (𝐾(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))(𝐻𝐾)) = (((𝐴o (𝐺𝐾)) ·o (𝐹‘(𝐺𝐾))) +o (𝐻𝐾)))
235, 6, 22sylancl 586 . 2 ((𝜑𝐾 ∈ ω) → (𝐾(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))(𝐻𝐾)) = (((𝐴o (𝐺𝐾)) ·o (𝐹‘(𝐺𝐾))) +o (𝐻𝐾)))
243, 23eqtrd 2768 1 ((𝜑𝐾 ∈ ω) → (𝐻‘suc 𝐾) = (((𝐴o (𝐺𝐾)) ·o (𝐹‘(𝐺𝐾))) +o (𝐻𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  c0 4282   E cep 5520  dom cdm 5621  Oncon0 6314  suc csuc 6316  cfv 6489  (class class class)co 7355  cmpo 7357  ωcom 7805   supp csupp 8099  seqωcseqom 8375   +o coa 8391   ·o comu 8392  o coe 8393  OrdIsocoi 9406   CNF ccnf 9562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-seqom 8376
This theorem is referenced by:  cantnfle  9572  cantnflt  9573  cantnfp1lem3  9581  cantnflem1d  9589  cantnflem1  9590  cnfcomlem  9600
  Copyright terms: Public domain W3C validator