MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfsuc Structured version   Visualization version   GIF version

Theorem cantnfsuc 9630
Description: The value of the recursive function 𝐻 at a successor. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfcl.g 𝐺 = OrdIso( E , (𝐹 supp ∅))
cantnfcl.f (𝜑𝐹𝑆)
cantnfval.h 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)
Assertion
Ref Expression
cantnfsuc ((𝜑𝐾 ∈ ω) → (𝐻‘suc 𝐾) = (((𝐴o (𝐺𝐾)) ·o (𝐹‘(𝐺𝐾))) +o (𝐻𝐾)))
Distinct variable groups:   𝑧,𝑘,𝐵   𝐴,𝑘,𝑧   𝑘,𝐹,𝑧   𝑆,𝑘,𝑧   𝑘,𝐺,𝑧   𝑘,𝐾,𝑧   𝜑,𝑘,𝑧
Allowed substitution hints:   𝐻(𝑧,𝑘)

Proof of Theorem cantnfsuc
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfval.h . . . 4 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)
21seqomsuc 8428 . . 3 (𝐾 ∈ ω → (𝐻‘suc 𝐾) = (𝐾(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))(𝐻𝐾)))
32adantl 481 . 2 ((𝜑𝐾 ∈ ω) → (𝐻‘suc 𝐾) = (𝐾(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))(𝐻𝐾)))
4 elex 3471 . . . 4 (𝐾 ∈ ω → 𝐾 ∈ V)
54adantl 481 . . 3 ((𝜑𝐾 ∈ ω) → 𝐾 ∈ V)
6 fvex 6874 . . 3 (𝐻𝐾) ∈ V
7 simpl 482 . . . . . . . 8 ((𝑢 = 𝐾𝑣 = (𝐻𝐾)) → 𝑢 = 𝐾)
87fveq2d 6865 . . . . . . 7 ((𝑢 = 𝐾𝑣 = (𝐻𝐾)) → (𝐺𝑢) = (𝐺𝐾))
98oveq2d 7406 . . . . . 6 ((𝑢 = 𝐾𝑣 = (𝐻𝐾)) → (𝐴o (𝐺𝑢)) = (𝐴o (𝐺𝐾)))
108fveq2d 6865 . . . . . 6 ((𝑢 = 𝐾𝑣 = (𝐻𝐾)) → (𝐹‘(𝐺𝑢)) = (𝐹‘(𝐺𝐾)))
119, 10oveq12d 7408 . . . . 5 ((𝑢 = 𝐾𝑣 = (𝐻𝐾)) → ((𝐴o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) = ((𝐴o (𝐺𝐾)) ·o (𝐹‘(𝐺𝐾))))
12 simpr 484 . . . . 5 ((𝑢 = 𝐾𝑣 = (𝐻𝐾)) → 𝑣 = (𝐻𝐾))
1311, 12oveq12d 7408 . . . 4 ((𝑢 = 𝐾𝑣 = (𝐻𝐾)) → (((𝐴o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) +o 𝑣) = (((𝐴o (𝐺𝐾)) ·o (𝐹‘(𝐺𝐾))) +o (𝐻𝐾)))
14 fveq2 6861 . . . . . . . 8 (𝑘 = 𝑢 → (𝐺𝑘) = (𝐺𝑢))
1514oveq2d 7406 . . . . . . 7 (𝑘 = 𝑢 → (𝐴o (𝐺𝑘)) = (𝐴o (𝐺𝑢)))
1614fveq2d 6865 . . . . . . 7 (𝑘 = 𝑢 → (𝐹‘(𝐺𝑘)) = (𝐹‘(𝐺𝑢)))
1715, 16oveq12d 7408 . . . . . 6 (𝑘 = 𝑢 → ((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) = ((𝐴o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))))
1817oveq1d 7405 . . . . 5 (𝑘 = 𝑢 → (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧) = (((𝐴o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) +o 𝑧))
19 oveq2 7398 . . . . 5 (𝑧 = 𝑣 → (((𝐴o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) +o 𝑧) = (((𝐴o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) +o 𝑣))
2018, 19cbvmpov 7487 . . . 4 (𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)) = (𝑢 ∈ V, 𝑣 ∈ V ↦ (((𝐴o (𝐺𝑢)) ·o (𝐹‘(𝐺𝑢))) +o 𝑣))
21 ovex 7423 . . . 4 (((𝐴o (𝐺𝐾)) ·o (𝐹‘(𝐺𝐾))) +o (𝐻𝐾)) ∈ V
2213, 20, 21ovmpoa 7547 . . 3 ((𝐾 ∈ V ∧ (𝐻𝐾) ∈ V) → (𝐾(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))(𝐻𝐾)) = (((𝐴o (𝐺𝐾)) ·o (𝐹‘(𝐺𝐾))) +o (𝐻𝐾)))
235, 6, 22sylancl 586 . 2 ((𝜑𝐾 ∈ ω) → (𝐾(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))(𝐻𝐾)) = (((𝐴o (𝐺𝐾)) ·o (𝐹‘(𝐺𝐾))) +o (𝐻𝐾)))
243, 23eqtrd 2765 1 ((𝜑𝐾 ∈ ω) → (𝐻‘suc 𝐾) = (((𝐴o (𝐺𝐾)) ·o (𝐹‘(𝐺𝐾))) +o (𝐻𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  c0 4299   E cep 5540  dom cdm 5641  Oncon0 6335  suc csuc 6337  cfv 6514  (class class class)co 7390  cmpo 7392  ωcom 7845   supp csupp 8142  seqωcseqom 8418   +o coa 8434   ·o comu 8435  o coe 8436  OrdIsocoi 9469   CNF ccnf 9621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-seqom 8419
This theorem is referenced by:  cantnfle  9631  cantnflt  9632  cantnfp1lem3  9640  cantnflem1d  9648  cantnflem1  9649  cnfcomlem  9659
  Copyright terms: Public domain W3C validator