| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cantnfsuc | Structured version Visualization version GIF version | ||
| Description: The value of the recursive function 𝐻 at a successor. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.) |
| Ref | Expression |
|---|---|
| cantnfs.s | ⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
| cantnfs.a | ⊢ (𝜑 → 𝐴 ∈ On) |
| cantnfs.b | ⊢ (𝜑 → 𝐵 ∈ On) |
| cantnfcl.g | ⊢ 𝐺 = OrdIso( E , (𝐹 supp ∅)) |
| cantnfcl.f | ⊢ (𝜑 → 𝐹 ∈ 𝑆) |
| cantnfval.h | ⊢ 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧)), ∅) |
| Ref | Expression |
|---|---|
| cantnfsuc | ⊢ ((𝜑 ∧ 𝐾 ∈ ω) → (𝐻‘suc 𝐾) = (((𝐴 ↑o (𝐺‘𝐾)) ·o (𝐹‘(𝐺‘𝐾))) +o (𝐻‘𝐾))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfval.h | . . . 4 ⊢ 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧)), ∅) | |
| 2 | 1 | seqomsuc 8371 | . . 3 ⊢ (𝐾 ∈ ω → (𝐻‘suc 𝐾) = (𝐾(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧))(𝐻‘𝐾))) |
| 3 | 2 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝐾 ∈ ω) → (𝐻‘suc 𝐾) = (𝐾(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧))(𝐻‘𝐾))) |
| 4 | elex 3457 | . . . 4 ⊢ (𝐾 ∈ ω → 𝐾 ∈ V) | |
| 5 | 4 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝐾 ∈ ω) → 𝐾 ∈ V) |
| 6 | fvex 6830 | . . 3 ⊢ (𝐻‘𝐾) ∈ V | |
| 7 | simpl 482 | . . . . . . . 8 ⊢ ((𝑢 = 𝐾 ∧ 𝑣 = (𝐻‘𝐾)) → 𝑢 = 𝐾) | |
| 8 | 7 | fveq2d 6821 | . . . . . . 7 ⊢ ((𝑢 = 𝐾 ∧ 𝑣 = (𝐻‘𝐾)) → (𝐺‘𝑢) = (𝐺‘𝐾)) |
| 9 | 8 | oveq2d 7357 | . . . . . 6 ⊢ ((𝑢 = 𝐾 ∧ 𝑣 = (𝐻‘𝐾)) → (𝐴 ↑o (𝐺‘𝑢)) = (𝐴 ↑o (𝐺‘𝐾))) |
| 10 | 8 | fveq2d 6821 | . . . . . 6 ⊢ ((𝑢 = 𝐾 ∧ 𝑣 = (𝐻‘𝐾)) → (𝐹‘(𝐺‘𝑢)) = (𝐹‘(𝐺‘𝐾))) |
| 11 | 9, 10 | oveq12d 7359 | . . . . 5 ⊢ ((𝑢 = 𝐾 ∧ 𝑣 = (𝐻‘𝐾)) → ((𝐴 ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) = ((𝐴 ↑o (𝐺‘𝐾)) ·o (𝐹‘(𝐺‘𝐾)))) |
| 12 | simpr 484 | . . . . 5 ⊢ ((𝑢 = 𝐾 ∧ 𝑣 = (𝐻‘𝐾)) → 𝑣 = (𝐻‘𝐾)) | |
| 13 | 11, 12 | oveq12d 7359 | . . . 4 ⊢ ((𝑢 = 𝐾 ∧ 𝑣 = (𝐻‘𝐾)) → (((𝐴 ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) +o 𝑣) = (((𝐴 ↑o (𝐺‘𝐾)) ·o (𝐹‘(𝐺‘𝐾))) +o (𝐻‘𝐾))) |
| 14 | fveq2 6817 | . . . . . . . 8 ⊢ (𝑘 = 𝑢 → (𝐺‘𝑘) = (𝐺‘𝑢)) | |
| 15 | 14 | oveq2d 7357 | . . . . . . 7 ⊢ (𝑘 = 𝑢 → (𝐴 ↑o (𝐺‘𝑘)) = (𝐴 ↑o (𝐺‘𝑢))) |
| 16 | 14 | fveq2d 6821 | . . . . . . 7 ⊢ (𝑘 = 𝑢 → (𝐹‘(𝐺‘𝑘)) = (𝐹‘(𝐺‘𝑢))) |
| 17 | 15, 16 | oveq12d 7359 | . . . . . 6 ⊢ (𝑘 = 𝑢 → ((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) = ((𝐴 ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢)))) |
| 18 | 17 | oveq1d 7356 | . . . . 5 ⊢ (𝑘 = 𝑢 → (((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧) = (((𝐴 ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) +o 𝑧)) |
| 19 | oveq2 7349 | . . . . 5 ⊢ (𝑧 = 𝑣 → (((𝐴 ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) +o 𝑧) = (((𝐴 ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) +o 𝑣)) | |
| 20 | 18, 19 | cbvmpov 7436 | . . . 4 ⊢ (𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧)) = (𝑢 ∈ V, 𝑣 ∈ V ↦ (((𝐴 ↑o (𝐺‘𝑢)) ·o (𝐹‘(𝐺‘𝑢))) +o 𝑣)) |
| 21 | ovex 7374 | . . . 4 ⊢ (((𝐴 ↑o (𝐺‘𝐾)) ·o (𝐹‘(𝐺‘𝐾))) +o (𝐻‘𝐾)) ∈ V | |
| 22 | 13, 20, 21 | ovmpoa 7496 | . . 3 ⊢ ((𝐾 ∈ V ∧ (𝐻‘𝐾) ∈ V) → (𝐾(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧))(𝐻‘𝐾)) = (((𝐴 ↑o (𝐺‘𝐾)) ·o (𝐹‘(𝐺‘𝐾))) +o (𝐻‘𝐾))) |
| 23 | 5, 6, 22 | sylancl 586 | . 2 ⊢ ((𝜑 ∧ 𝐾 ∈ ω) → (𝐾(𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧))(𝐻‘𝐾)) = (((𝐴 ↑o (𝐺‘𝐾)) ·o (𝐹‘(𝐺‘𝐾))) +o (𝐻‘𝐾))) |
| 24 | 3, 23 | eqtrd 2766 | 1 ⊢ ((𝜑 ∧ 𝐾 ∈ ω) → (𝐻‘suc 𝐾) = (((𝐴 ↑o (𝐺‘𝐾)) ·o (𝐹‘(𝐺‘𝐾))) +o (𝐻‘𝐾))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4278 E cep 5510 dom cdm 5611 Oncon0 6301 suc csuc 6303 ‘cfv 6476 (class class class)co 7341 ∈ cmpo 7343 ωcom 7791 supp csupp 8085 seqωcseqom 8361 +o coa 8377 ·o comu 8378 ↑o coe 8379 OrdIsocoi 9390 CNF ccnf 9546 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-seqom 8362 |
| This theorem is referenced by: cantnfle 9556 cantnflt 9557 cantnfp1lem3 9565 cantnflem1d 9573 cantnflem1 9574 cnfcomlem 9584 |
| Copyright terms: Public domain | W3C validator |