Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemd5 Structured version   Visualization version   GIF version

Theorem cdlemd5 40201
Description: Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 30-May-2012.)
Hypotheses
Ref Expression
cdlemd4.l = (le‘𝐾)
cdlemd4.j = (join‘𝐾)
cdlemd4.a 𝐴 = (Atoms‘𝐾)
cdlemd4.h 𝐻 = (LHyp‘𝐾)
cdlemd4.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemd5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → (𝐹𝑅) = (𝐺𝑅))

Proof of Theorem cdlemd5
StepHypRef Expression
1 fveq2 6822 . . . 4 (𝑅 = 𝑃 → (𝐹𝑅) = (𝐹𝑃))
2 fveq2 6822 . . . 4 (𝑅 = 𝑃 → (𝐺𝑅) = (𝐺𝑃))
31, 2eqeq12d 2745 . . 3 (𝑅 = 𝑃 → ((𝐹𝑅) = (𝐺𝑅) ↔ (𝐹𝑃) = (𝐺𝑃)))
4 simpll1 1213 . . . 4 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) ∧ 𝑅 (𝑃 𝑄)) ∧ 𝑅𝑃) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴))
5 simpl21 1252 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) ∧ 𝑅 (𝑃 𝑄)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
65adantr 480 . . . 4 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) ∧ 𝑅 (𝑃 𝑄)) ∧ 𝑅𝑃) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
7 simpl22 1253 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) ∧ 𝑅 (𝑃 𝑄)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
87adantr 480 . . . 4 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) ∧ 𝑅 (𝑃 𝑄)) ∧ 𝑅𝑃) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
9 simp23 1209 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → 𝑃𝑄)
109ad2antrr 726 . . . . 5 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) ∧ 𝑅 (𝑃 𝑄)) ∧ 𝑅𝑃) → 𝑃𝑄)
11 simplr 768 . . . . 5 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) ∧ 𝑅 (𝑃 𝑄)) ∧ 𝑅𝑃) → 𝑅 (𝑃 𝑄))
12 simpr 484 . . . . 5 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) ∧ 𝑅 (𝑃 𝑄)) ∧ 𝑅𝑃) → 𝑅𝑃)
1310, 11, 123jca 1128 . . . 4 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) ∧ 𝑅 (𝑃 𝑄)) ∧ 𝑅𝑃) → (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃))
14 simpll3 1215 . . . 4 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) ∧ 𝑅 (𝑃 𝑄)) ∧ 𝑅𝑃) → ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄)))
15 cdlemd4.l . . . . 5 = (le‘𝐾)
16 cdlemd4.j . . . . 5 = (join‘𝐾)
17 cdlemd4.a . . . . 5 𝐴 = (Atoms‘𝐾)
18 cdlemd4.h . . . . 5 𝐻 = (LHyp‘𝐾)
19 cdlemd4.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
2015, 16, 17, 18, 19cdlemd4 40200 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → (𝐹𝑅) = (𝐺𝑅))
214, 6, 8, 13, 14, 20syl131anc 1385 . . 3 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) ∧ 𝑅 (𝑃 𝑄)) ∧ 𝑅𝑃) → (𝐹𝑅) = (𝐺𝑅))
22 simpl3l 1229 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) ∧ 𝑅 (𝑃 𝑄)) → (𝐹𝑃) = (𝐺𝑃))
233, 21, 22pm2.61ne 3010 . 2 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) ∧ 𝑅 (𝑃 𝑄)) → (𝐹𝑅) = (𝐺𝑅))
24 simpl1 1192 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) ∧ ¬ 𝑅 (𝑃 𝑄)) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴))
25 simpl21 1252 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) ∧ ¬ 𝑅 (𝑃 𝑄)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
26 simpl22 1253 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) ∧ ¬ 𝑅 (𝑃 𝑄)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
27 simpl23 1254 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑃𝑄)
28 simpr 484 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) ∧ ¬ 𝑅 (𝑃 𝑄)) → ¬ 𝑅 (𝑃 𝑄))
2927, 28jca 511 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) ∧ ¬ 𝑅 (𝑃 𝑄)) → (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))
30 simpl3 1194 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) ∧ ¬ 𝑅 (𝑃 𝑄)) → ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄)))
3115, 16, 17, 18, 19cdlemd2 40198 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → (𝐹𝑅) = (𝐺𝑅))
3224, 25, 26, 29, 30, 31syl131anc 1385 . 2 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) ∧ ¬ 𝑅 (𝑃 𝑄)) → (𝐹𝑅) = (𝐺𝑅))
3323, 32pm2.61dan 812 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → (𝐹𝑅) = (𝐺𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5092  cfv 6482  (class class class)co 7349  lecple 17168  joincjn 18217  Atomscatm 39262  HLchlt 39349  LHypclh 39983  LTrncltrn 40100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-map 8755  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39175  df-ol 39177  df-oml 39178  df-covers 39265  df-ats 39266  df-atl 39297  df-cvlat 39321  df-hlat 39350  df-psubsp 39502  df-pmap 39503  df-padd 39795  df-lhyp 39987  df-laut 39988  df-ldil 40103  df-ltrn 40104
This theorem is referenced by:  cdlemd7  40203
  Copyright terms: Public domain W3C validator