Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemd5 Structured version   Visualization version   GIF version

Theorem cdlemd5 39068
Description: Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 30-May-2012.)
Hypotheses
Ref Expression
cdlemd4.l ≀ = (leβ€˜πΎ)
cdlemd4.j ∨ = (joinβ€˜πΎ)
cdlemd4.a 𝐴 = (Atomsβ€˜πΎ)
cdlemd4.h 𝐻 = (LHypβ€˜πΎ)
cdlemd4.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
cdlemd5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ ((πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ) ∧ (πΉβ€˜π‘„) = (πΊβ€˜π‘„))) β†’ (πΉβ€˜π‘…) = (πΊβ€˜π‘…))

Proof of Theorem cdlemd5
StepHypRef Expression
1 fveq2 6891 . . . 4 (𝑅 = 𝑃 β†’ (πΉβ€˜π‘…) = (πΉβ€˜π‘ƒ))
2 fveq2 6891 . . . 4 (𝑅 = 𝑃 β†’ (πΊβ€˜π‘…) = (πΊβ€˜π‘ƒ))
31, 2eqeq12d 2748 . . 3 (𝑅 = 𝑃 β†’ ((πΉβ€˜π‘…) = (πΊβ€˜π‘…) ↔ (πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ)))
4 simpll1 1212 . . . 4 ((((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ ((πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ) ∧ (πΉβ€˜π‘„) = (πΊβ€˜π‘„))) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 β‰  𝑃) β†’ ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴))
5 simpl21 1251 . . . . 5 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ ((πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ) ∧ (πΉβ€˜π‘„) = (πΊβ€˜π‘„))) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
65adantr 481 . . . 4 ((((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ ((πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ) ∧ (πΉβ€˜π‘„) = (πΊβ€˜π‘„))) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 β‰  𝑃) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
7 simpl22 1252 . . . . 5 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ ((πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ) ∧ (πΉβ€˜π‘„) = (πΊβ€˜π‘„))) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) β†’ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))
87adantr 481 . . . 4 ((((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ ((πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ) ∧ (πΉβ€˜π‘„) = (πΊβ€˜π‘„))) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 β‰  𝑃) β†’ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))
9 simp23 1208 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ ((πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ) ∧ (πΉβ€˜π‘„) = (πΊβ€˜π‘„))) β†’ 𝑃 β‰  𝑄)
109ad2antrr 724 . . . . 5 ((((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ ((πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ) ∧ (πΉβ€˜π‘„) = (πΊβ€˜π‘„))) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 β‰  𝑃) β†’ 𝑃 β‰  𝑄)
11 simplr 767 . . . . 5 ((((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ ((πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ) ∧ (πΉβ€˜π‘„) = (πΊβ€˜π‘„))) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 β‰  𝑃) β†’ 𝑅 ≀ (𝑃 ∨ 𝑄))
12 simpr 485 . . . . 5 ((((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ ((πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ) ∧ (πΉβ€˜π‘„) = (πΊβ€˜π‘„))) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 β‰  𝑃) β†’ 𝑅 β‰  𝑃)
1310, 11, 123jca 1128 . . . 4 ((((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ ((πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ) ∧ (πΉβ€˜π‘„) = (πΊβ€˜π‘„))) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 β‰  𝑃) β†’ (𝑃 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 β‰  𝑃))
14 simpll3 1214 . . . 4 ((((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ ((πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ) ∧ (πΉβ€˜π‘„) = (πΊβ€˜π‘„))) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 β‰  𝑃) β†’ ((πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ) ∧ (πΉβ€˜π‘„) = (πΊβ€˜π‘„)))
15 cdlemd4.l . . . . 5 ≀ = (leβ€˜πΎ)
16 cdlemd4.j . . . . 5 ∨ = (joinβ€˜πΎ)
17 cdlemd4.a . . . . 5 𝐴 = (Atomsβ€˜πΎ)
18 cdlemd4.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
19 cdlemd4.t . . . . 5 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
2015, 16, 17, 18, 19cdlemd4 39067 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 β‰  𝑃)) ∧ ((πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ) ∧ (πΉβ€˜π‘„) = (πΊβ€˜π‘„))) β†’ (πΉβ€˜π‘…) = (πΊβ€˜π‘…))
214, 6, 8, 13, 14, 20syl131anc 1383 . . 3 ((((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ ((πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ) ∧ (πΉβ€˜π‘„) = (πΊβ€˜π‘„))) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) ∧ 𝑅 β‰  𝑃) β†’ (πΉβ€˜π‘…) = (πΊβ€˜π‘…))
22 simpl3l 1228 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ ((πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ) ∧ (πΉβ€˜π‘„) = (πΊβ€˜π‘„))) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) β†’ (πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ))
233, 21, 22pm2.61ne 3027 . 2 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ ((πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ) ∧ (πΉβ€˜π‘„) = (πΊβ€˜π‘„))) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) β†’ (πΉβ€˜π‘…) = (πΊβ€˜π‘…))
24 simpl1 1191 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ ((πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ) ∧ (πΉβ€˜π‘„) = (πΊβ€˜π‘„))) ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)) β†’ ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴))
25 simpl21 1251 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ ((πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ) ∧ (πΉβ€˜π‘„) = (πΊβ€˜π‘„))) ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
26 simpl22 1252 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ ((πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ) ∧ (πΉβ€˜π‘„) = (πΊβ€˜π‘„))) ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)) β†’ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))
27 simpl23 1253 . . . 4 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ ((πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ) ∧ (πΉβ€˜π‘„) = (πΊβ€˜π‘„))) ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑃 β‰  𝑄)
28 simpr 485 . . . 4 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ ((πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ) ∧ (πΉβ€˜π‘„) = (πΊβ€˜π‘„))) ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)) β†’ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄))
2927, 28jca 512 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ ((πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ) ∧ (πΉβ€˜π‘„) = (πΊβ€˜π‘„))) ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)) β†’ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)))
30 simpl3 1193 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ ((πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ) ∧ (πΉβ€˜π‘„) = (πΊβ€˜π‘„))) ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)) β†’ ((πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ) ∧ (πΉβ€˜π‘„) = (πΊβ€˜π‘„)))
3115, 16, 17, 18, 19cdlemd2 39065 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄))) ∧ ((πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ) ∧ (πΉβ€˜π‘„) = (πΊβ€˜π‘„))) β†’ (πΉβ€˜π‘…) = (πΊβ€˜π‘…))
3224, 25, 26, 29, 30, 31syl131anc 1383 . 2 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ ((πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ) ∧ (πΉβ€˜π‘„) = (πΊβ€˜π‘„))) ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)) β†’ (πΉβ€˜π‘…) = (πΊβ€˜π‘…))
3323, 32pm2.61dan 811 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ ((πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ) ∧ (πΉβ€˜π‘„) = (πΊβ€˜π‘„))) β†’ (πΉβ€˜π‘…) = (πΊβ€˜π‘…))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7408  lecple 17203  joincjn 18263  Atomscatm 38128  HLchlt 38215  LHypclh 38850  LTrncltrn 38967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-1st 7974  df-2nd 7975  df-map 8821  df-proset 18247  df-poset 18265  df-plt 18282  df-lub 18298  df-glb 18299  df-join 18300  df-meet 18301  df-p0 18377  df-p1 18378  df-lat 18384  df-clat 18451  df-oposet 38041  df-ol 38043  df-oml 38044  df-covers 38131  df-ats 38132  df-atl 38163  df-cvlat 38187  df-hlat 38216  df-psubsp 38369  df-pmap 38370  df-padd 38662  df-lhyp 38854  df-laut 38855  df-ldil 38970  df-ltrn 38971
This theorem is referenced by:  cdlemd7  39070
  Copyright terms: Public domain W3C validator