Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemd5 Structured version   Visualization version   GIF version

Theorem cdlemd5 40159
Description: Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 30-May-2012.)
Hypotheses
Ref Expression
cdlemd4.l = (le‘𝐾)
cdlemd4.j = (join‘𝐾)
cdlemd4.a 𝐴 = (Atoms‘𝐾)
cdlemd4.h 𝐻 = (LHyp‘𝐾)
cdlemd4.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemd5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → (𝐹𝑅) = (𝐺𝑅))

Proof of Theorem cdlemd5
StepHypRef Expression
1 fveq2 6920 . . . 4 (𝑅 = 𝑃 → (𝐹𝑅) = (𝐹𝑃))
2 fveq2 6920 . . . 4 (𝑅 = 𝑃 → (𝐺𝑅) = (𝐺𝑃))
31, 2eqeq12d 2756 . . 3 (𝑅 = 𝑃 → ((𝐹𝑅) = (𝐺𝑅) ↔ (𝐹𝑃) = (𝐺𝑃)))
4 simpll1 1212 . . . 4 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) ∧ 𝑅 (𝑃 𝑄)) ∧ 𝑅𝑃) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴))
5 simpl21 1251 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) ∧ 𝑅 (𝑃 𝑄)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
65adantr 480 . . . 4 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) ∧ 𝑅 (𝑃 𝑄)) ∧ 𝑅𝑃) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
7 simpl22 1252 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) ∧ 𝑅 (𝑃 𝑄)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
87adantr 480 . . . 4 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) ∧ 𝑅 (𝑃 𝑄)) ∧ 𝑅𝑃) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
9 simp23 1208 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → 𝑃𝑄)
109ad2antrr 725 . . . . 5 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) ∧ 𝑅 (𝑃 𝑄)) ∧ 𝑅𝑃) → 𝑃𝑄)
11 simplr 768 . . . . 5 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) ∧ 𝑅 (𝑃 𝑄)) ∧ 𝑅𝑃) → 𝑅 (𝑃 𝑄))
12 simpr 484 . . . . 5 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) ∧ 𝑅 (𝑃 𝑄)) ∧ 𝑅𝑃) → 𝑅𝑃)
1310, 11, 123jca 1128 . . . 4 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) ∧ 𝑅 (𝑃 𝑄)) ∧ 𝑅𝑃) → (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃))
14 simpll3 1214 . . . 4 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) ∧ 𝑅 (𝑃 𝑄)) ∧ 𝑅𝑃) → ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄)))
15 cdlemd4.l . . . . 5 = (le‘𝐾)
16 cdlemd4.j . . . . 5 = (join‘𝐾)
17 cdlemd4.a . . . . 5 𝐴 = (Atoms‘𝐾)
18 cdlemd4.h . . . . 5 𝐻 = (LHyp‘𝐾)
19 cdlemd4.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
2015, 16, 17, 18, 19cdlemd4 40158 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → (𝐹𝑅) = (𝐺𝑅))
214, 6, 8, 13, 14, 20syl131anc 1383 . . 3 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) ∧ 𝑅 (𝑃 𝑄)) ∧ 𝑅𝑃) → (𝐹𝑅) = (𝐺𝑅))
22 simpl3l 1228 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) ∧ 𝑅 (𝑃 𝑄)) → (𝐹𝑃) = (𝐺𝑃))
233, 21, 22pm2.61ne 3033 . 2 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) ∧ 𝑅 (𝑃 𝑄)) → (𝐹𝑅) = (𝐺𝑅))
24 simpl1 1191 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) ∧ ¬ 𝑅 (𝑃 𝑄)) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴))
25 simpl21 1251 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) ∧ ¬ 𝑅 (𝑃 𝑄)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
26 simpl22 1252 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) ∧ ¬ 𝑅 (𝑃 𝑄)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
27 simpl23 1253 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑃𝑄)
28 simpr 484 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) ∧ ¬ 𝑅 (𝑃 𝑄)) → ¬ 𝑅 (𝑃 𝑄))
2927, 28jca 511 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) ∧ ¬ 𝑅 (𝑃 𝑄)) → (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))
30 simpl3 1193 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) ∧ ¬ 𝑅 (𝑃 𝑄)) → ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄)))
3115, 16, 17, 18, 19cdlemd2 40156 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → (𝐹𝑅) = (𝐺𝑅))
3224, 25, 26, 29, 30, 31syl131anc 1383 . 2 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) ∧ ¬ 𝑅 (𝑃 𝑄)) → (𝐹𝑅) = (𝐺𝑅))
3323, 32pm2.61dan 812 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → (𝐹𝑅) = (𝐺𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cfv 6573  (class class class)co 7448  lecple 17318  joincjn 18381  Atomscatm 39219  HLchlt 39306  LHypclh 39941  LTrncltrn 40058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-p1 18496  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-psubsp 39460  df-pmap 39461  df-padd 39753  df-lhyp 39945  df-laut 39946  df-ldil 40061  df-ltrn 40062
This theorem is referenced by:  cdlemd7  40161
  Copyright terms: Public domain W3C validator