Proof of Theorem cdlemd5
Step | Hyp | Ref
| Expression |
1 | | fveq2 6756 |
. . . 4
⊢ (𝑅 = 𝑃 → (𝐹‘𝑅) = (𝐹‘𝑃)) |
2 | | fveq2 6756 |
. . . 4
⊢ (𝑅 = 𝑃 → (𝐺‘𝑅) = (𝐺‘𝑃)) |
3 | 1, 2 | eqeq12d 2754 |
. . 3
⊢ (𝑅 = 𝑃 → ((𝐹‘𝑅) = (𝐺‘𝑅) ↔ (𝐹‘𝑃) = (𝐺‘𝑃))) |
4 | | simpll1 1210 |
. . . 4
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≠ 𝑃) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴)) |
5 | | simpl21 1249 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
6 | 5 | adantr 480 |
. . . 4
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≠ 𝑃) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
7 | | simpl22 1250 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
8 | 7 | adantr 480 |
. . . 4
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≠ 𝑃) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
9 | | simp23 1206 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → 𝑃 ≠ 𝑄) |
10 | 9 | ad2antrr 722 |
. . . . 5
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≠ 𝑃) → 𝑃 ≠ 𝑄) |
11 | | simplr 765 |
. . . . 5
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≠ 𝑃) → 𝑅 ≤ (𝑃 ∨ 𝑄)) |
12 | | simpr 484 |
. . . . 5
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≠ 𝑃) → 𝑅 ≠ 𝑃) |
13 | 10, 11, 12 | 3jca 1126 |
. . . 4
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≠ 𝑃) → (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑃)) |
14 | | simpll3 1212 |
. . . 4
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≠ 𝑃) → ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) |
15 | | cdlemd4.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
16 | | cdlemd4.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
17 | | cdlemd4.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
18 | | cdlemd4.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
19 | | cdlemd4.t |
. . . . 5
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
20 | 15, 16, 17, 18, 19 | cdlemd4 38142 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑃)) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → (𝐹‘𝑅) = (𝐺‘𝑅)) |
21 | 4, 6, 8, 13, 14, 20 | syl131anc 1381 |
. . 3
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑅 ≠ 𝑃) → (𝐹‘𝑅) = (𝐺‘𝑅)) |
22 | | simpl3l 1226 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (𝐹‘𝑃) = (𝐺‘𝑃)) |
23 | 3, 21, 22 | pm2.61ne 3029 |
. 2
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (𝐹‘𝑅) = (𝐺‘𝑅)) |
24 | | simpl1 1189 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴)) |
25 | | simpl21 1249 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
26 | | simpl22 1250 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
27 | | simpl23 1251 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → 𝑃 ≠ 𝑄) |
28 | | simpr 484 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) |
29 | 27, 28 | jca 511 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) |
30 | | simpl3 1191 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) |
31 | 15, 16, 17, 18, 19 | cdlemd2 38140 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → (𝐹‘𝑅) = (𝐺‘𝑅)) |
32 | 24, 25, 26, 29, 30, 31 | syl131anc 1381 |
. 2
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (𝐹‘𝑅) = (𝐺‘𝑅)) |
33 | 23, 32 | pm2.61dan 809 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → (𝐹‘𝑅) = (𝐺‘𝑅)) |