| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sn-addcan2d | Structured version Visualization version GIF version | ||
| Description: addcan2d 11314 without ax-mulcom 11067. (Contributed by SN, 5-May-2024.) |
| Ref | Expression |
|---|---|
| sn-addcan2d.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| sn-addcan2d.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| sn-addcan2d.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| Ref | Expression |
|---|---|
| sn-addcan2d | ⊢ (𝜑 → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sn-addcan2d.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 2 | sn-negex 42450 | . . 3 ⊢ (𝐶 ∈ ℂ → ∃𝑥 ∈ ℂ (𝐶 + 𝑥) = 0) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ ℂ (𝐶 + 𝑥) = 0) |
| 4 | oveq1 7353 | . . . 4 ⊢ ((𝐴 + 𝐶) = (𝐵 + 𝐶) → ((𝐴 + 𝐶) + 𝑥) = ((𝐵 + 𝐶) + 𝑥)) | |
| 5 | sn-addcan2d.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 6 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → 𝐴 ∈ ℂ) |
| 7 | 1 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → 𝐶 ∈ ℂ) |
| 8 | simprl 770 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → 𝑥 ∈ ℂ) | |
| 9 | 6, 7, 8 | addassd 11131 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → ((𝐴 + 𝐶) + 𝑥) = (𝐴 + (𝐶 + 𝑥))) |
| 10 | simprr 772 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → (𝐶 + 𝑥) = 0) | |
| 11 | 10 | oveq2d 7362 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → (𝐴 + (𝐶 + 𝑥)) = (𝐴 + 0)) |
| 12 | sn-addrid 42453 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | |
| 13 | 6, 12 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → (𝐴 + 0) = 𝐴) |
| 14 | 9, 11, 13 | 3eqtrd 2770 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → ((𝐴 + 𝐶) + 𝑥) = 𝐴) |
| 15 | sn-addcan2d.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 16 | 15 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → 𝐵 ∈ ℂ) |
| 17 | 16, 7, 8 | addassd 11131 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → ((𝐵 + 𝐶) + 𝑥) = (𝐵 + (𝐶 + 𝑥))) |
| 18 | 10 | oveq2d 7362 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → (𝐵 + (𝐶 + 𝑥)) = (𝐵 + 0)) |
| 19 | sn-addrid 42453 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → (𝐵 + 0) = 𝐵) | |
| 20 | 16, 19 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → (𝐵 + 0) = 𝐵) |
| 21 | 17, 18, 20 | 3eqtrd 2770 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → ((𝐵 + 𝐶) + 𝑥) = 𝐵) |
| 22 | 14, 21 | eqeq12d 2747 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → (((𝐴 + 𝐶) + 𝑥) = ((𝐵 + 𝐶) + 𝑥) ↔ 𝐴 = 𝐵)) |
| 23 | 4, 22 | imbitrid 244 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → ((𝐴 + 𝐶) = (𝐵 + 𝐶) → 𝐴 = 𝐵)) |
| 24 | oveq1 7353 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 + 𝐶) = (𝐵 + 𝐶)) | |
| 25 | 23, 24 | impbid1 225 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵)) |
| 26 | 3, 25 | rexlimddv 3139 | 1 ⊢ (𝜑 → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 (class class class)co 7346 ℂcc 11001 0cc0 11003 + caddc 11006 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-ltxr 11148 df-2 12185 df-3 12186 df-resub 42398 |
| This theorem is referenced by: reixi 42455 |
| Copyright terms: Public domain | W3C validator |