Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-addcan2d Structured version   Visualization version   GIF version

Theorem sn-addcan2d 42454
Description: addcan2d 11314 without ax-mulcom 11067. (Contributed by SN, 5-May-2024.)
Hypotheses
Ref Expression
sn-addcan2d.a (𝜑𝐴 ∈ ℂ)
sn-addcan2d.b (𝜑𝐵 ∈ ℂ)
sn-addcan2d.c (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
sn-addcan2d (𝜑 → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵))

Proof of Theorem sn-addcan2d
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sn-addcan2d.c . . 3 (𝜑𝐶 ∈ ℂ)
2 sn-negex 42450 . . 3 (𝐶 ∈ ℂ → ∃𝑥 ∈ ℂ (𝐶 + 𝑥) = 0)
31, 2syl 17 . 2 (𝜑 → ∃𝑥 ∈ ℂ (𝐶 + 𝑥) = 0)
4 oveq1 7353 . . . 4 ((𝐴 + 𝐶) = (𝐵 + 𝐶) → ((𝐴 + 𝐶) + 𝑥) = ((𝐵 + 𝐶) + 𝑥))
5 sn-addcan2d.a . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
65adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → 𝐴 ∈ ℂ)
71adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → 𝐶 ∈ ℂ)
8 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → 𝑥 ∈ ℂ)
96, 7, 8addassd 11131 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → ((𝐴 + 𝐶) + 𝑥) = (𝐴 + (𝐶 + 𝑥)))
10 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → (𝐶 + 𝑥) = 0)
1110oveq2d 7362 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → (𝐴 + (𝐶 + 𝑥)) = (𝐴 + 0))
12 sn-addrid 42453 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
136, 12syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → (𝐴 + 0) = 𝐴)
149, 11, 133eqtrd 2770 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → ((𝐴 + 𝐶) + 𝑥) = 𝐴)
15 sn-addcan2d.b . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
1615adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → 𝐵 ∈ ℂ)
1716, 7, 8addassd 11131 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → ((𝐵 + 𝐶) + 𝑥) = (𝐵 + (𝐶 + 𝑥)))
1810oveq2d 7362 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → (𝐵 + (𝐶 + 𝑥)) = (𝐵 + 0))
19 sn-addrid 42453 . . . . . . 7 (𝐵 ∈ ℂ → (𝐵 + 0) = 𝐵)
2016, 19syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → (𝐵 + 0) = 𝐵)
2117, 18, 203eqtrd 2770 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → ((𝐵 + 𝐶) + 𝑥) = 𝐵)
2214, 21eqeq12d 2747 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → (((𝐴 + 𝐶) + 𝑥) = ((𝐵 + 𝐶) + 𝑥) ↔ 𝐴 = 𝐵))
234, 22imbitrid 244 . . 3 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → ((𝐴 + 𝐶) = (𝐵 + 𝐶) → 𝐴 = 𝐵))
24 oveq1 7353 . . 3 (𝐴 = 𝐵 → (𝐴 + 𝐶) = (𝐵 + 𝐶))
2523, 24impbid1 225 . 2 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵))
263, 25rexlimddv 3139 1 (𝜑 → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wrex 3056  (class class class)co 7346  cc 11001  0cc0 11003   + caddc 11006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-ltxr 11148  df-2 12185  df-3 12186  df-resub 42398
This theorem is referenced by:  reixi  42455
  Copyright terms: Public domain W3C validator