Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-addcan2d Structured version   Visualization version   GIF version

Theorem sn-addcan2d 42417
Description: addcan2d 11385 without ax-mulcom 11139. (Contributed by SN, 5-May-2024.)
Hypotheses
Ref Expression
sn-addcan2d.a (𝜑𝐴 ∈ ℂ)
sn-addcan2d.b (𝜑𝐵 ∈ ℂ)
sn-addcan2d.c (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
sn-addcan2d (𝜑 → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵))

Proof of Theorem sn-addcan2d
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sn-addcan2d.c . . 3 (𝜑𝐶 ∈ ℂ)
2 sn-negex 42413 . . 3 (𝐶 ∈ ℂ → ∃𝑥 ∈ ℂ (𝐶 + 𝑥) = 0)
31, 2syl 17 . 2 (𝜑 → ∃𝑥 ∈ ℂ (𝐶 + 𝑥) = 0)
4 oveq1 7397 . . . 4 ((𝐴 + 𝐶) = (𝐵 + 𝐶) → ((𝐴 + 𝐶) + 𝑥) = ((𝐵 + 𝐶) + 𝑥))
5 sn-addcan2d.a . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
65adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → 𝐴 ∈ ℂ)
71adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → 𝐶 ∈ ℂ)
8 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → 𝑥 ∈ ℂ)
96, 7, 8addassd 11203 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → ((𝐴 + 𝐶) + 𝑥) = (𝐴 + (𝐶 + 𝑥)))
10 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → (𝐶 + 𝑥) = 0)
1110oveq2d 7406 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → (𝐴 + (𝐶 + 𝑥)) = (𝐴 + 0))
12 sn-addrid 42416 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
136, 12syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → (𝐴 + 0) = 𝐴)
149, 11, 133eqtrd 2769 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → ((𝐴 + 𝐶) + 𝑥) = 𝐴)
15 sn-addcan2d.b . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
1615adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → 𝐵 ∈ ℂ)
1716, 7, 8addassd 11203 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → ((𝐵 + 𝐶) + 𝑥) = (𝐵 + (𝐶 + 𝑥)))
1810oveq2d 7406 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → (𝐵 + (𝐶 + 𝑥)) = (𝐵 + 0))
19 sn-addrid 42416 . . . . . . 7 (𝐵 ∈ ℂ → (𝐵 + 0) = 𝐵)
2016, 19syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → (𝐵 + 0) = 𝐵)
2117, 18, 203eqtrd 2769 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → ((𝐵 + 𝐶) + 𝑥) = 𝐵)
2214, 21eqeq12d 2746 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → (((𝐴 + 𝐶) + 𝑥) = ((𝐵 + 𝐶) + 𝑥) ↔ 𝐴 = 𝐵))
234, 22imbitrid 244 . . 3 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → ((𝐴 + 𝐶) = (𝐵 + 𝐶) → 𝐴 = 𝐵))
24 oveq1 7397 . . 3 (𝐴 = 𝐵 → (𝐴 + 𝐶) = (𝐵 + 𝐶))
2523, 24impbid1 225 . 2 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵))
263, 25rexlimddv 3141 1 (𝜑 → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3054  (class class class)co 7390  cc 11073  0cc0 11075   + caddc 11078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-ltxr 11220  df-2 12256  df-3 12257  df-resub 42361
This theorem is referenced by:  reixi  42418
  Copyright terms: Public domain W3C validator