![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sn-addcan2d | Structured version Visualization version GIF version |
Description: addcan2d 11422 without ax-mulcom 11176. (Contributed by SN, 5-May-2024.) |
Ref | Expression |
---|---|
sn-addcan2d.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
sn-addcan2d.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
sn-addcan2d.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
sn-addcan2d | ⊢ (𝜑 → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sn-addcan2d.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
2 | sn-negex 41873 | . . 3 ⊢ (𝐶 ∈ ℂ → ∃𝑥 ∈ ℂ (𝐶 + 𝑥) = 0) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ ℂ (𝐶 + 𝑥) = 0) |
4 | oveq1 7412 | . . . 4 ⊢ ((𝐴 + 𝐶) = (𝐵 + 𝐶) → ((𝐴 + 𝐶) + 𝑥) = ((𝐵 + 𝐶) + 𝑥)) | |
5 | sn-addcan2d.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
6 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → 𝐴 ∈ ℂ) |
7 | 1 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → 𝐶 ∈ ℂ) |
8 | simprl 768 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → 𝑥 ∈ ℂ) | |
9 | 6, 7, 8 | addassd 11240 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → ((𝐴 + 𝐶) + 𝑥) = (𝐴 + (𝐶 + 𝑥))) |
10 | simprr 770 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → (𝐶 + 𝑥) = 0) | |
11 | 10 | oveq2d 7421 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → (𝐴 + (𝐶 + 𝑥)) = (𝐴 + 0)) |
12 | sn-addrid 41876 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | |
13 | 6, 12 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → (𝐴 + 0) = 𝐴) |
14 | 9, 11, 13 | 3eqtrd 2770 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → ((𝐴 + 𝐶) + 𝑥) = 𝐴) |
15 | sn-addcan2d.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
16 | 15 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → 𝐵 ∈ ℂ) |
17 | 16, 7, 8 | addassd 11240 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → ((𝐵 + 𝐶) + 𝑥) = (𝐵 + (𝐶 + 𝑥))) |
18 | 10 | oveq2d 7421 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → (𝐵 + (𝐶 + 𝑥)) = (𝐵 + 0)) |
19 | sn-addrid 41876 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → (𝐵 + 0) = 𝐵) | |
20 | 16, 19 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → (𝐵 + 0) = 𝐵) |
21 | 17, 18, 20 | 3eqtrd 2770 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → ((𝐵 + 𝐶) + 𝑥) = 𝐵) |
22 | 14, 21 | eqeq12d 2742 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → (((𝐴 + 𝐶) + 𝑥) = ((𝐵 + 𝐶) + 𝑥) ↔ 𝐴 = 𝐵)) |
23 | 4, 22 | imbitrid 243 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → ((𝐴 + 𝐶) = (𝐵 + 𝐶) → 𝐴 = 𝐵)) |
24 | oveq1 7412 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 + 𝐶) = (𝐵 + 𝐶)) | |
25 | 23, 24 | impbid1 224 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵)) |
26 | 3, 25 | rexlimddv 3155 | 1 ⊢ (𝜑 → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∃wrex 3064 (class class class)co 7405 ℂcc 11110 0cc0 11112 + caddc 11115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-po 5581 df-so 5582 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-ltxr 11257 df-2 12279 df-3 12280 df-resub 41822 |
This theorem is referenced by: reixi 41878 |
Copyright terms: Public domain | W3C validator |