| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sn-addcan2d | Structured version Visualization version GIF version | ||
| Description: addcan2d 11444 without ax-mulcom 11198. (Contributed by SN, 5-May-2024.) |
| Ref | Expression |
|---|---|
| sn-addcan2d.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| sn-addcan2d.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| sn-addcan2d.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| Ref | Expression |
|---|---|
| sn-addcan2d | ⊢ (𝜑 → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sn-addcan2d.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 2 | sn-negex 42427 | . . 3 ⊢ (𝐶 ∈ ℂ → ∃𝑥 ∈ ℂ (𝐶 + 𝑥) = 0) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ ℂ (𝐶 + 𝑥) = 0) |
| 4 | oveq1 7417 | . . . 4 ⊢ ((𝐴 + 𝐶) = (𝐵 + 𝐶) → ((𝐴 + 𝐶) + 𝑥) = ((𝐵 + 𝐶) + 𝑥)) | |
| 5 | sn-addcan2d.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 6 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → 𝐴 ∈ ℂ) |
| 7 | 1 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → 𝐶 ∈ ℂ) |
| 8 | simprl 770 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → 𝑥 ∈ ℂ) | |
| 9 | 6, 7, 8 | addassd 11262 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → ((𝐴 + 𝐶) + 𝑥) = (𝐴 + (𝐶 + 𝑥))) |
| 10 | simprr 772 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → (𝐶 + 𝑥) = 0) | |
| 11 | 10 | oveq2d 7426 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → (𝐴 + (𝐶 + 𝑥)) = (𝐴 + 0)) |
| 12 | sn-addrid 42430 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | |
| 13 | 6, 12 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → (𝐴 + 0) = 𝐴) |
| 14 | 9, 11, 13 | 3eqtrd 2775 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → ((𝐴 + 𝐶) + 𝑥) = 𝐴) |
| 15 | sn-addcan2d.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 16 | 15 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → 𝐵 ∈ ℂ) |
| 17 | 16, 7, 8 | addassd 11262 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → ((𝐵 + 𝐶) + 𝑥) = (𝐵 + (𝐶 + 𝑥))) |
| 18 | 10 | oveq2d 7426 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → (𝐵 + (𝐶 + 𝑥)) = (𝐵 + 0)) |
| 19 | sn-addrid 42430 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → (𝐵 + 0) = 𝐵) | |
| 20 | 16, 19 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → (𝐵 + 0) = 𝐵) |
| 21 | 17, 18, 20 | 3eqtrd 2775 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → ((𝐵 + 𝐶) + 𝑥) = 𝐵) |
| 22 | 14, 21 | eqeq12d 2752 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → (((𝐴 + 𝐶) + 𝑥) = ((𝐵 + 𝐶) + 𝑥) ↔ 𝐴 = 𝐵)) |
| 23 | 4, 22 | imbitrid 244 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → ((𝐴 + 𝐶) = (𝐵 + 𝐶) → 𝐴 = 𝐵)) |
| 24 | oveq1 7417 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 + 𝐶) = (𝐵 + 𝐶)) | |
| 25 | 23, 24 | impbid1 225 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 + 𝑥) = 0)) → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵)) |
| 26 | 3, 25 | rexlimddv 3148 | 1 ⊢ (𝜑 → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 (class class class)co 7410 ℂcc 11132 0cc0 11134 + caddc 11137 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-ltxr 11279 df-2 12308 df-3 12309 df-resub 42376 |
| This theorem is referenced by: reixi 42432 |
| Copyright terms: Public domain | W3C validator |