![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sn-addrid | Structured version Visualization version GIF version |
Description: addrid 11470 without ax-mulcom 11248. (Contributed by SN, 5-May-2024.) |
Ref | Expression |
---|---|
sn-addrid | ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sn-negex2 42394 | . 2 ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ (𝑥 + 𝐴) = 0) | |
2 | simprr 772 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → (𝑥 + 𝐴) = 0) | |
3 | 2 | oveq1d 7463 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → ((𝑥 + 𝐴) + 0) = (0 + 0)) |
4 | sn-00id 42377 | . . . . 5 ⊢ (0 + 0) = 0 | |
5 | 3, 4 | eqtrdi 2796 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → ((𝑥 + 𝐴) + 0) = 0) |
6 | simprl 770 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → 𝑥 ∈ ℂ) | |
7 | simpl 482 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → 𝐴 ∈ ℂ) | |
8 | 0cnd 11283 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → 0 ∈ ℂ) | |
9 | 6, 7, 8 | addassd 11312 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → ((𝑥 + 𝐴) + 0) = (𝑥 + (𝐴 + 0))) |
10 | 2, 5, 9 | 3eqtr2rd 2787 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → (𝑥 + (𝐴 + 0)) = (𝑥 + 𝐴)) |
11 | 7, 8 | addcld 11309 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → (𝐴 + 0) ∈ ℂ) |
12 | 6, 11, 7 | sn-addcand 42395 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → ((𝑥 + (𝐴 + 0)) = (𝑥 + 𝐴) ↔ (𝐴 + 0) = 𝐴)) |
13 | 10, 12 | mpbid 232 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → (𝐴 + 0) = 𝐴) |
14 | 1, 13 | rexlimddv 3167 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 0cc0 11184 + caddc 11187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-2 12356 df-3 12357 df-resub 42342 |
This theorem is referenced by: sn-addcan2d 42397 sn-addid0 42400 |
Copyright terms: Public domain | W3C validator |