![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sn-mul01 | Structured version Visualization version GIF version |
Description: mul01 11463 without ax-mulcom 11242. (Contributed by SN, 5-May-2024.) |
Ref | Expression |
---|---|
sn-mul01 | ⊢ (𝐴 ∈ ℂ → (𝐴 · 0) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
2 | 0cnd 11277 | . . 3 ⊢ (𝐴 ∈ ℂ → 0 ∈ ℂ) | |
3 | 1, 2 | mulcld 11304 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 0) ∈ ℂ) |
4 | 1, 2, 2 | adddid 11308 | . . 3 ⊢ (𝐴 ∈ ℂ → (𝐴 · (0 + 0)) = ((𝐴 · 0) + (𝐴 · 0))) |
5 | sn-00id 42370 | . . . 4 ⊢ (0 + 0) = 0 | |
6 | 5 | oveq2i 7454 | . . 3 ⊢ (𝐴 · (0 + 0)) = (𝐴 · 0) |
7 | 4, 6 | eqtr3di 2795 | . 2 ⊢ (𝐴 ∈ ℂ → ((𝐴 · 0) + (𝐴 · 0)) = (𝐴 · 0)) |
8 | 3, 7 | sn-addid0 42393 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 · 0) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 (class class class)co 7443 ℂcc 11176 0cc0 11178 + caddc 11181 · cmul 11183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7764 ax-resscn 11235 ax-1cn 11236 ax-icn 11237 ax-addcl 11238 ax-addrcl 11239 ax-mulcl 11240 ax-mulrcl 11241 ax-addass 11243 ax-mulass 11244 ax-distr 11245 ax-i2m1 11246 ax-1ne0 11247 ax-1rid 11248 ax-rnegex 11249 ax-rrecex 11250 ax-cnre 11251 ax-pre-lttri 11252 ax-pre-lttrn 11253 ax-pre-ltadd 11254 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-f1 6573 df-fo 6574 df-f1o 6575 df-fv 6576 df-riota 7399 df-ov 7446 df-oprab 7447 df-mpo 7448 df-er 8757 df-en 8998 df-dom 8999 df-sdom 9000 df-pnf 11320 df-mnf 11321 df-ltxr 11323 df-2 12350 df-3 12351 df-resub 42335 |
This theorem is referenced by: sn-0tie0 42408 |
Copyright terms: Public domain | W3C validator |