Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > stoweidlem33 | Structured version Visualization version GIF version |
Description: If a set of real functions from a common domain is closed under addition, multiplication and it contains constants, then it is closed under subtraction. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
stoweidlem33.1 | ⊢ Ⅎ𝑡𝐹 |
stoweidlem33.2 | ⊢ Ⅎ𝑡𝐺 |
stoweidlem33.3 | ⊢ Ⅎ𝑡𝜑 |
stoweidlem33.4 | ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) |
stoweidlem33.5 | ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) |
stoweidlem33.6 | ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
stoweidlem33.7 | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) |
Ref | Expression |
---|---|
stoweidlem33 | ⊢ ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) − (𝐺‘𝑡))) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoweidlem33.3 | . 2 ⊢ Ⅎ𝑡𝜑 | |
2 | stoweidlem33.1 | . 2 ⊢ Ⅎ𝑡𝐹 | |
3 | stoweidlem33.2 | . 2 ⊢ Ⅎ𝑡𝐺 | |
4 | eqid 2759 | . 2 ⊢ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) − (𝐺‘𝑡))) = (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) − (𝐺‘𝑡))) | |
5 | eqid 2759 | . 2 ⊢ (𝑡 ∈ 𝑇 ↦ -1) = (𝑡 ∈ 𝑇 ↦ -1) | |
6 | eqid 2759 | . 2 ⊢ (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ -1)‘𝑡) · (𝐺‘𝑡))) = (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ -1)‘𝑡) · (𝐺‘𝑡))) | |
7 | stoweidlem33.4 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) | |
8 | stoweidlem33.5 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) | |
9 | stoweidlem33.6 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) | |
10 | stoweidlem33.7 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | stoweidlem22 43020 | 1 ⊢ ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) − (𝐺‘𝑡))) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 ∧ w3a 1085 Ⅎwnf 1786 ∈ wcel 2112 Ⅎwnfc 2900 ↦ cmpt 5110 ⟶wf 6329 ‘cfv 6333 (class class class)co 7148 ℝcr 10564 1c1 10566 + caddc 10568 · cmul 10570 − cmin 10898 -cneg 10899 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7457 ax-resscn 10622 ax-1cn 10623 ax-icn 10624 ax-addcl 10625 ax-addrcl 10626 ax-mulcl 10627 ax-mulrcl 10628 ax-mulcom 10629 ax-addass 10630 ax-mulass 10631 ax-distr 10632 ax-i2m1 10633 ax-1ne0 10634 ax-1rid 10635 ax-rnegex 10636 ax-rrecex 10637 ax-cnre 10638 ax-pre-lttri 10639 ax-pre-lttrn 10640 ax-pre-ltadd 10641 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4419 df-pw 4494 df-sn 4521 df-pr 4523 df-op 4527 df-uni 4797 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5428 df-po 5441 df-so 5442 df-xp 5528 df-rel 5529 df-cnv 5530 df-co 5531 df-dm 5532 df-rn 5533 df-res 5534 df-ima 5535 df-iota 6292 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7106 df-ov 7151 df-oprab 7152 df-mpo 7153 df-er 8297 df-en 8526 df-dom 8527 df-sdom 8528 df-pnf 10705 df-mnf 10706 df-ltxr 10708 df-sub 10900 df-neg 10901 |
This theorem is referenced by: stoweidlem40 43038 stoweidlem41 43039 |
Copyright terms: Public domain | W3C validator |