Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem33 Structured version   Visualization version   GIF version

Theorem stoweidlem33 46010
Description: If a set of real functions from a common domain is closed under addition, multiplication and it contains constants, then it is closed under subtraction. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem33.1 𝑡𝐹
stoweidlem33.2 𝑡𝐺
stoweidlem33.3 𝑡𝜑
stoweidlem33.4 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
stoweidlem33.5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem33.6 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem33.7 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
Assertion
Ref Expression
stoweidlem33 ((𝜑𝐹𝐴𝐺𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) − (𝐺𝑡))) ∈ 𝐴)
Distinct variable groups:   𝑓,𝑔,𝑡,𝐴   𝑓,𝐹,𝑔   𝑓,𝐺,𝑔   𝑇,𝑓,𝑔,𝑡   𝜑,𝑓,𝑔   𝑥,𝑡,𝐴   𝑥,𝑇   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑡)   𝐹(𝑥,𝑡)   𝐺(𝑥,𝑡)

Proof of Theorem stoweidlem33
StepHypRef Expression
1 stoweidlem33.3 . 2 𝑡𝜑
2 stoweidlem33.1 . 2 𝑡𝐹
3 stoweidlem33.2 . 2 𝑡𝐺
4 eqid 2735 . 2 (𝑡𝑇 ↦ ((𝐹𝑡) − (𝐺𝑡))) = (𝑡𝑇 ↦ ((𝐹𝑡) − (𝐺𝑡)))
5 eqid 2735 . 2 (𝑡𝑇 ↦ -1) = (𝑡𝑇 ↦ -1)
6 eqid 2735 . 2 (𝑡𝑇 ↦ (((𝑡𝑇 ↦ -1)‘𝑡) · (𝐺𝑡))) = (𝑡𝑇 ↦ (((𝑡𝑇 ↦ -1)‘𝑡) · (𝐺𝑡)))
7 stoweidlem33.4 . 2 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
8 stoweidlem33.5 . 2 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
9 stoweidlem33.6 . 2 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
10 stoweidlem33.7 . 2 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10stoweidlem22 45999 1 ((𝜑𝐹𝐴𝐺𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) − (𝐺𝑡))) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wnf 1783  wcel 2108  wnfc 2883  cmpt 5201  wf 6526  cfv 6530  (class class class)co 7403  cr 11126  1c1 11128   + caddc 11130   · cmul 11132  cmin 11464  -cneg 11465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11269  df-mnf 11270  df-ltxr 11272  df-sub 11466  df-neg 11467
This theorem is referenced by:  stoweidlem40  46017  stoweidlem41  46018
  Copyright terms: Public domain W3C validator