![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > stoweidlem33 | Structured version Visualization version GIF version |
Description: If a set of real functions from a common domain is closed under addition, multiplication and it contains constants, then it is closed under subtraction. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
stoweidlem33.1 | ⊢ Ⅎ𝑡𝐹 |
stoweidlem33.2 | ⊢ Ⅎ𝑡𝐺 |
stoweidlem33.3 | ⊢ Ⅎ𝑡𝜑 |
stoweidlem33.4 | ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) |
stoweidlem33.5 | ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) |
stoweidlem33.6 | ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
stoweidlem33.7 | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) |
Ref | Expression |
---|---|
stoweidlem33 | ⊢ ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) − (𝐺‘𝑡))) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoweidlem33.3 | . 2 ⊢ Ⅎ𝑡𝜑 | |
2 | stoweidlem33.1 | . 2 ⊢ Ⅎ𝑡𝐹 | |
3 | stoweidlem33.2 | . 2 ⊢ Ⅎ𝑡𝐺 | |
4 | eqid 2734 | . 2 ⊢ (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) − (𝐺‘𝑡))) = (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) − (𝐺‘𝑡))) | |
5 | eqid 2734 | . 2 ⊢ (𝑡 ∈ 𝑇 ↦ -1) = (𝑡 ∈ 𝑇 ↦ -1) | |
6 | eqid 2734 | . 2 ⊢ (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ -1)‘𝑡) · (𝐺‘𝑡))) = (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ -1)‘𝑡) · (𝐺‘𝑡))) | |
7 | stoweidlem33.4 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) | |
8 | stoweidlem33.5 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) | |
9 | stoweidlem33.6 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) | |
10 | stoweidlem33.7 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | stoweidlem22 45977 | 1 ⊢ ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) − (𝐺‘𝑡))) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 Ⅎwnf 1779 ∈ wcel 2105 Ⅎwnfc 2887 ↦ cmpt 5230 ⟶wf 6558 ‘cfv 6562 (class class class)co 7430 ℝcr 11151 1c1 11153 + caddc 11155 · cmul 11157 − cmin 11489 -cneg 11490 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-po 5596 df-so 5597 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-ltxr 11297 df-sub 11491 df-neg 11492 |
This theorem is referenced by: stoweidlem40 45995 stoweidlem41 45996 |
Copyright terms: Public domain | W3C validator |