MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subaddmulsub Structured version   Visualization version   GIF version

Theorem subaddmulsub 11368
Description: The difference with a product of a sum and a difference. (Contributed by AV, 5-Mar-2023.)
Assertion
Ref Expression
subaddmulsub (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ 𝐸 ∈ ℂ) → (𝐸 − ((𝐴 + 𝐵) · (𝐶𝐷))) = (((𝐸 − (𝐴 · 𝐶)) − (𝐵 · 𝐶)) + ((𝐴 · 𝐷) + (𝐵 · 𝐷))))

Proof of Theorem subaddmulsub
StepHypRef Expression
1 addmulsub 11367 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) · (𝐶𝐷)) = (((𝐴 · 𝐶) + (𝐵 · 𝐶)) − ((𝐴 · 𝐷) + (𝐵 · 𝐷))))
213adant3 1130 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ 𝐸 ∈ ℂ) → ((𝐴 + 𝐵) · (𝐶𝐷)) = (((𝐴 · 𝐶) + (𝐵 · 𝐶)) − ((𝐴 · 𝐷) + (𝐵 · 𝐷))))
32oveq2d 7271 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ 𝐸 ∈ ℂ) → (𝐸 − ((𝐴 + 𝐵) · (𝐶𝐷))) = (𝐸 − (((𝐴 · 𝐶) + (𝐵 · 𝐶)) − ((𝐴 · 𝐷) + (𝐵 · 𝐷)))))
4 simp3 1136 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ 𝐸 ∈ ℂ) → 𝐸 ∈ ℂ)
5 simp1l 1195 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ 𝐸 ∈ ℂ) → 𝐴 ∈ ℂ)
6 simp2l 1197 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ 𝐸 ∈ ℂ) → 𝐶 ∈ ℂ)
75, 6mulcld 10926 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ 𝐸 ∈ ℂ) → (𝐴 · 𝐶) ∈ ℂ)
8 simp1r 1196 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ 𝐸 ∈ ℂ) → 𝐵 ∈ ℂ)
98, 6mulcld 10926 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ 𝐸 ∈ ℂ) → (𝐵 · 𝐶) ∈ ℂ)
107, 9addcld 10925 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ 𝐸 ∈ ℂ) → ((𝐴 · 𝐶) + (𝐵 · 𝐶)) ∈ ℂ)
11 simp2r 1198 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ 𝐸 ∈ ℂ) → 𝐷 ∈ ℂ)
125, 11mulcld 10926 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ 𝐸 ∈ ℂ) → (𝐴 · 𝐷) ∈ ℂ)
138, 11mulcld 10926 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ 𝐸 ∈ ℂ) → (𝐵 · 𝐷) ∈ ℂ)
1412, 13addcld 10925 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ 𝐸 ∈ ℂ) → ((𝐴 · 𝐷) + (𝐵 · 𝐷)) ∈ ℂ)
154, 10, 14subsubd 11290 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ 𝐸 ∈ ℂ) → (𝐸 − (((𝐴 · 𝐶) + (𝐵 · 𝐶)) − ((𝐴 · 𝐷) + (𝐵 · 𝐷)))) = ((𝐸 − ((𝐴 · 𝐶) + (𝐵 · 𝐶))) + ((𝐴 · 𝐷) + (𝐵 · 𝐷))))
164, 7, 9subsub4d 11293 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ 𝐸 ∈ ℂ) → ((𝐸 − (𝐴 · 𝐶)) − (𝐵 · 𝐶)) = (𝐸 − ((𝐴 · 𝐶) + (𝐵 · 𝐶))))
1716eqcomd 2744 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ 𝐸 ∈ ℂ) → (𝐸 − ((𝐴 · 𝐶) + (𝐵 · 𝐶))) = ((𝐸 − (𝐴 · 𝐶)) − (𝐵 · 𝐶)))
1817oveq1d 7270 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ 𝐸 ∈ ℂ) → ((𝐸 − ((𝐴 · 𝐶) + (𝐵 · 𝐶))) + ((𝐴 · 𝐷) + (𝐵 · 𝐷))) = (((𝐸 − (𝐴 · 𝐶)) − (𝐵 · 𝐶)) + ((𝐴 · 𝐷) + (𝐵 · 𝐷))))
193, 15, 183eqtrd 2782 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ 𝐸 ∈ ℂ) → (𝐸 − ((𝐴 + 𝐵) · (𝐶𝐷))) = (((𝐸 − (𝐴 · 𝐶)) − (𝐵 · 𝐶)) + ((𝐴 · 𝐷) + (𝐵 · 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  (class class class)co 7255  cc 10800   + caddc 10805   · cmul 10807  cmin 11135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-ltxr 10945  df-sub 11137
This theorem is referenced by:  mulsubaddmulsub  11369
  Copyright terms: Public domain W3C validator