MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsubd Structured version   Visualization version   GIF version

Theorem subsubd 11620
Description: Law for double subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
negidd.1 (𝜑𝐴 ∈ ℂ)
pncand.2 (𝜑𝐵 ∈ ℂ)
subaddd.3 (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
subsubd (𝜑 → (𝐴 − (𝐵𝐶)) = ((𝐴𝐵) + 𝐶))

Proof of Theorem subsubd
StepHypRef Expression
1 negidd.1 . 2 (𝜑𝐴 ∈ ℂ)
2 pncand.2 . 2 (𝜑𝐵 ∈ ℂ)
3 subaddd.3 . 2 (𝜑𝐶 ∈ ℂ)
4 subsub 11511 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 − (𝐵𝐶)) = ((𝐴𝐵) + 𝐶))
51, 2, 3, 4syl3anc 1373 1 (𝜑 → (𝐴 − (𝐵𝐶)) = ((𝐴𝐵) + 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  (class class class)co 7403  cc 11125   + caddc 11130  cmin 11464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11269  df-mnf 11270  df-ltxr 11272  df-sub 11466
This theorem is referenced by:  subaddmulsub  11698  uzsubsubfz  13561  bcm1k  14331  swrds2m  14958  crre  15131  imval2  15168  cvgcmp  15830  arisum2  15875  mertenslem1  15898  binomfallfaclem2  16054  fallfacval4  16057  bpolydiflem  16068  bpoly3  16072  bpoly4  16073  cos01bnd  16202  prmdiv  16802  vfermltlALT  16820  dvle  25962  dvfsumlem2  25983  dvfsumlem2OLD  25984  efif1olem2  26502  affineequiv  26783  heron  26798  dquart  26813  quartlem1  26817  acosneg  26847  efiatan2  26877  atans2  26891  birthdaylem2  26912  lgamcvg2  27015  wilthlem2  27029  basellem5  27045  gausslemma2dlem1a  27326  pntrlog2bndlem4  27541  pntrlog2bndlem5  27542  pntrlog2bndlem6  27544  colinearalglem2  28832  axsegconlem9  28850  clwlkclwwlklem2a1  29919  clwlkclwwlklem2a4  29924  clwwlkext2edg  29983  numclwwlk1lem2foalem  30278  numclwwlk1lem2fo  30285  wrdt2ind  32875  constrrtcc  33715  subfacp1lem5  35152  poimirlem29  37619  itg2addnclem  37641  itg2addnclem3  37643  bcle2d  42138  rmspecsqrtnq  42876  sub31  45267  infleinflem2  45346  stoweidlem26  46003  fourierdlem19  46103  fourierdlem63  46146  fourierdlem107  46190  ovolval5lem1  46629  fmtnorec4  47511  itcovalt2lem2lem2  48602
  Copyright terms: Public domain W3C validator