Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subsubd | Structured version Visualization version GIF version |
Description: Law for double subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
subaddd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
subsubd | ⊢ (𝜑 → (𝐴 − (𝐵 − 𝐶)) = ((𝐴 − 𝐵) + 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | subaddd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | subsub 11260 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 − (𝐵 − 𝐶)) = ((𝐴 − 𝐵) + 𝐶)) | |
5 | 1, 2, 3, 4 | syl3anc 1370 | 1 ⊢ (𝜑 → (𝐴 − (𝐵 − 𝐶)) = ((𝐴 − 𝐵) + 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 (class class class)co 7284 ℂcc 10878 + caddc 10883 − cmin 11214 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-po 5504 df-so 5505 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-er 8507 df-en 8743 df-dom 8744 df-sdom 8745 df-pnf 11020 df-mnf 11021 df-ltxr 11023 df-sub 11216 |
This theorem is referenced by: subaddmulsub 11447 uzsubsubfz 13287 bcm1k 14038 swrds2m 14663 crre 14834 imval2 14871 cvgcmp 15537 arisum2 15582 mertenslem1 15605 binomfallfaclem2 15759 fallfacval4 15762 bpolydiflem 15773 bpoly3 15777 bpoly4 15778 cos01bnd 15904 prmdiv 16495 vfermltlALT 16512 dvle 25180 dvfsumlem2 25200 efif1olem2 25708 affineequiv 25982 heron 25997 dquart 26012 quartlem1 26016 acosneg 26046 efiatan2 26076 atans2 26090 birthdaylem2 26111 lgamcvg2 26213 wilthlem2 26227 basellem5 26243 gausslemma2dlem1a 26522 pntrlog2bndlem4 26737 pntrlog2bndlem5 26738 pntrlog2bndlem6 26740 colinearalglem2 27284 axsegconlem9 27302 clwlkclwwlklem2a1 28365 clwlkclwwlklem2a4 28370 clwwlkext2edg 28429 numclwwlk1lem2foalem 28724 numclwwlk1lem2fo 28731 wrdt2ind 31234 subfacp1lem5 33155 poimirlem29 35815 itg2addnclem 35837 itg2addnclem3 35839 rmspecsqrtnq 40735 sub31 42836 infleinflem2 42917 stoweidlem26 43574 fourierdlem19 43674 fourierdlem63 43717 fourierdlem107 43761 ovolval5lem1 44197 fmtnorec4 45012 itcovalt2lem2lem2 46031 |
Copyright terms: Public domain | W3C validator |