MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsubd Structured version   Visualization version   GIF version

Theorem subsubd 11645
Description: Law for double subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
negidd.1 (𝜑𝐴 ∈ ℂ)
pncand.2 (𝜑𝐵 ∈ ℂ)
subaddd.3 (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
subsubd (𝜑 → (𝐴 − (𝐵𝐶)) = ((𝐴𝐵) + 𝐶))

Proof of Theorem subsubd
StepHypRef Expression
1 negidd.1 . 2 (𝜑𝐴 ∈ ℂ)
2 pncand.2 . 2 (𝜑𝐵 ∈ ℂ)
3 subaddd.3 . 2 (𝜑𝐶 ∈ ℂ)
4 subsub 11536 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 − (𝐵𝐶)) = ((𝐴𝐵) + 𝐶))
51, 2, 3, 4syl3anc 1370 1 (𝜑 → (𝐴 − (𝐵𝐶)) = ((𝐴𝐵) + 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2105  (class class class)co 7430  cc 11150   + caddc 11155  cmin 11489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-po 5596  df-so 5597  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-ltxr 11297  df-sub 11491
This theorem is referenced by:  subaddmulsub  11723  uzsubsubfz  13582  bcm1k  14350  swrds2m  14976  crre  15149  imval2  15186  cvgcmp  15848  arisum2  15893  mertenslem1  15916  binomfallfaclem2  16072  fallfacval4  16075  bpolydiflem  16086  bpoly3  16090  bpoly4  16091  cos01bnd  16218  prmdiv  16818  vfermltlALT  16835  dvle  26060  dvfsumlem2  26081  dvfsumlem2OLD  26082  efif1olem2  26599  affineequiv  26880  heron  26895  dquart  26910  quartlem1  26914  acosneg  26944  efiatan2  26974  atans2  26988  birthdaylem2  27009  lgamcvg2  27112  wilthlem2  27126  basellem5  27142  gausslemma2dlem1a  27423  pntrlog2bndlem4  27638  pntrlog2bndlem5  27639  pntrlog2bndlem6  27641  colinearalglem2  28936  axsegconlem9  28954  clwlkclwwlklem2a1  30020  clwlkclwwlklem2a4  30025  clwwlkext2edg  30084  numclwwlk1lem2foalem  30379  numclwwlk1lem2fo  30386  wrdt2ind  32922  constrrtcc  33740  subfacp1lem5  35168  poimirlem29  37635  itg2addnclem  37657  itg2addnclem3  37659  bcle2d  42160  rmspecsqrtnq  42893  sub31  45240  infleinflem2  45320  stoweidlem26  45981  fourierdlem19  46081  fourierdlem63  46124  fourierdlem107  46168  ovolval5lem1  46607  fmtnorec4  47473  itcovalt2lem2lem2  48523
  Copyright terms: Public domain W3C validator