MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsubd Structured version   Visualization version   GIF version

Theorem subsubd 11598
Description: Law for double subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
negidd.1 (𝜑𝐴 ∈ ℂ)
pncand.2 (𝜑𝐵 ∈ ℂ)
subaddd.3 (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
subsubd (𝜑 → (𝐴 − (𝐵𝐶)) = ((𝐴𝐵) + 𝐶))

Proof of Theorem subsubd
StepHypRef Expression
1 negidd.1 . 2 (𝜑𝐴 ∈ ℂ)
2 pncand.2 . 2 (𝜑𝐵 ∈ ℂ)
3 subaddd.3 . 2 (𝜑𝐶 ∈ ℂ)
4 subsub 11489 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 − (𝐵𝐶)) = ((𝐴𝐵) + 𝐶))
51, 2, 3, 4syl3anc 1371 1 (𝜑 → (𝐴 − (𝐵𝐶)) = ((𝐴𝐵) + 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  (class class class)co 7408  cc 11107   + caddc 11112  cmin 11443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-ltxr 11252  df-sub 11445
This theorem is referenced by:  subaddmulsub  11676  uzsubsubfz  13522  bcm1k  14274  swrds2m  14891  crre  15060  imval2  15097  cvgcmp  15761  arisum2  15806  mertenslem1  15829  binomfallfaclem2  15983  fallfacval4  15986  bpolydiflem  15997  bpoly3  16001  bpoly4  16002  cos01bnd  16128  prmdiv  16717  vfermltlALT  16734  dvle  25523  dvfsumlem2  25543  efif1olem2  26051  affineequiv  26325  heron  26340  dquart  26355  quartlem1  26359  acosneg  26389  efiatan2  26419  atans2  26433  birthdaylem2  26454  lgamcvg2  26556  wilthlem2  26570  basellem5  26586  gausslemma2dlem1a  26865  pntrlog2bndlem4  27080  pntrlog2bndlem5  27081  pntrlog2bndlem6  27083  colinearalglem2  28162  axsegconlem9  28180  clwlkclwwlklem2a1  29242  clwlkclwwlklem2a4  29247  clwwlkext2edg  29306  numclwwlk1lem2foalem  29601  numclwwlk1lem2fo  29608  wrdt2ind  32112  subfacp1lem5  34170  gg-dvfsumlem2  35178  poimirlem29  36512  itg2addnclem  36534  itg2addnclem3  36536  rmspecsqrtnq  41634  sub31  43990  infleinflem2  44071  stoweidlem26  44732  fourierdlem19  44832  fourierdlem63  44875  fourierdlem107  44919  ovolval5lem1  45358  fmtnorec4  46207  itcovalt2lem2lem2  47350
  Copyright terms: Public domain W3C validator