MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsubd Structured version   Visualization version   GIF version

Theorem subsubd 11369
Description: Law for double subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
negidd.1 (𝜑𝐴 ∈ ℂ)
pncand.2 (𝜑𝐵 ∈ ℂ)
subaddd.3 (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
subsubd (𝜑 → (𝐴 − (𝐵𝐶)) = ((𝐴𝐵) + 𝐶))

Proof of Theorem subsubd
StepHypRef Expression
1 negidd.1 . 2 (𝜑𝐴 ∈ ℂ)
2 pncand.2 . 2 (𝜑𝐵 ∈ ℂ)
3 subaddd.3 . 2 (𝜑𝐶 ∈ ℂ)
4 subsub 11260 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 − (𝐵𝐶)) = ((𝐴𝐵) + 𝐶))
51, 2, 3, 4syl3anc 1370 1 (𝜑 → (𝐴 − (𝐵𝐶)) = ((𝐴𝐵) + 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  (class class class)co 7284  cc 10878   + caddc 10883  cmin 11214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-br 5076  df-opab 5138  df-mpt 5159  df-id 5490  df-po 5504  df-so 5505  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-er 8507  df-en 8743  df-dom 8744  df-sdom 8745  df-pnf 11020  df-mnf 11021  df-ltxr 11023  df-sub 11216
This theorem is referenced by:  subaddmulsub  11447  uzsubsubfz  13287  bcm1k  14038  swrds2m  14663  crre  14834  imval2  14871  cvgcmp  15537  arisum2  15582  mertenslem1  15605  binomfallfaclem2  15759  fallfacval4  15762  bpolydiflem  15773  bpoly3  15777  bpoly4  15778  cos01bnd  15904  prmdiv  16495  vfermltlALT  16512  dvle  25180  dvfsumlem2  25200  efif1olem2  25708  affineequiv  25982  heron  25997  dquart  26012  quartlem1  26016  acosneg  26046  efiatan2  26076  atans2  26090  birthdaylem2  26111  lgamcvg2  26213  wilthlem2  26227  basellem5  26243  gausslemma2dlem1a  26522  pntrlog2bndlem4  26737  pntrlog2bndlem5  26738  pntrlog2bndlem6  26740  colinearalglem2  27284  axsegconlem9  27302  clwlkclwwlklem2a1  28365  clwlkclwwlklem2a4  28370  clwwlkext2edg  28429  numclwwlk1lem2foalem  28724  numclwwlk1lem2fo  28731  wrdt2ind  31234  subfacp1lem5  33155  poimirlem29  35815  itg2addnclem  35837  itg2addnclem3  35839  rmspecsqrtnq  40735  sub31  42836  infleinflem2  42917  stoweidlem26  43574  fourierdlem19  43674  fourierdlem63  43717  fourierdlem107  43761  ovolval5lem1  44197  fmtnorec4  45012  itcovalt2lem2lem2  46031
  Copyright terms: Public domain W3C validator