MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsubd Structured version   Visualization version   GIF version

Theorem subsubd 11675
Description: Law for double subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
negidd.1 (𝜑𝐴 ∈ ℂ)
pncand.2 (𝜑𝐵 ∈ ℂ)
subaddd.3 (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
subsubd (𝜑 → (𝐴 − (𝐵𝐶)) = ((𝐴𝐵) + 𝐶))

Proof of Theorem subsubd
StepHypRef Expression
1 negidd.1 . 2 (𝜑𝐴 ∈ ℂ)
2 pncand.2 . 2 (𝜑𝐵 ∈ ℂ)
3 subaddd.3 . 2 (𝜑𝐶 ∈ ℂ)
4 subsub 11566 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 − (𝐵𝐶)) = ((𝐴𝐵) + 𝐶))
51, 2, 3, 4syl3anc 1371 1 (𝜑 → (𝐴 − (𝐵𝐶)) = ((𝐴𝐵) + 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  (class class class)co 7448  cc 11182   + caddc 11187  cmin 11520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-ltxr 11329  df-sub 11522
This theorem is referenced by:  subaddmulsub  11753  uzsubsubfz  13606  bcm1k  14364  swrds2m  14990  crre  15163  imval2  15200  cvgcmp  15864  arisum2  15909  mertenslem1  15932  binomfallfaclem2  16088  fallfacval4  16091  bpolydiflem  16102  bpoly3  16106  bpoly4  16107  cos01bnd  16234  prmdiv  16832  vfermltlALT  16849  dvle  26066  dvfsumlem2  26087  dvfsumlem2OLD  26088  efif1olem2  26603  affineequiv  26884  heron  26899  dquart  26914  quartlem1  26918  acosneg  26948  efiatan2  26978  atans2  26992  birthdaylem2  27013  lgamcvg2  27116  wilthlem2  27130  basellem5  27146  gausslemma2dlem1a  27427  pntrlog2bndlem4  27642  pntrlog2bndlem5  27643  pntrlog2bndlem6  27645  colinearalglem2  28940  axsegconlem9  28958  clwlkclwwlklem2a1  30024  clwlkclwwlklem2a4  30029  clwwlkext2edg  30088  numclwwlk1lem2foalem  30383  numclwwlk1lem2fo  30390  wrdt2ind  32920  constrrtcc  33726  subfacp1lem5  35152  poimirlem29  37609  itg2addnclem  37631  itg2addnclem3  37633  bcle2d  42136  rmspecsqrtnq  42862  sub31  45205  infleinflem2  45286  stoweidlem26  45947  fourierdlem19  46047  fourierdlem63  46090  fourierdlem107  46134  ovolval5lem1  46573  fmtnorec4  47423  itcovalt2lem2lem2  48408
  Copyright terms: Public domain W3C validator