MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulsubaddmulsub Structured version   Visualization version   GIF version

Theorem mulsubaddmulsub 11678
Description: A special difference of a product with a product of a sum and a difference. (Contributed by AV, 5-Mar-2023.)
Assertion
Ref Expression
mulsubaddmulsub (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚)) โ†’ ((๐ต ยท ๐ถ) โˆ’ ((๐ด + ๐ต) ยท (๐ถ โˆ’ ๐ท))) = (((๐ด ยท ๐ท) + (๐ต ยท ๐ท)) โˆ’ (๐ด ยท ๐ถ)))

Proof of Theorem mulsubaddmulsub
StepHypRef Expression
1 simplr 768 . . . 4 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚)) โ†’ ๐ต โˆˆ โ„‚)
2 simprl 770 . . . 4 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚)) โ†’ ๐ถ โˆˆ โ„‚)
31, 2mulcld 11234 . . 3 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚)) โ†’ (๐ต ยท ๐ถ) โˆˆ โ„‚)
4 subaddmulsub 11677 . . 3 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚) โˆง (๐ต ยท ๐ถ) โˆˆ โ„‚) โ†’ ((๐ต ยท ๐ถ) โˆ’ ((๐ด + ๐ต) ยท (๐ถ โˆ’ ๐ท))) = ((((๐ต ยท ๐ถ) โˆ’ (๐ด ยท ๐ถ)) โˆ’ (๐ต ยท ๐ถ)) + ((๐ด ยท ๐ท) + (๐ต ยท ๐ท))))
53, 4mpd3an3 1463 . 2 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚)) โ†’ ((๐ต ยท ๐ถ) โˆ’ ((๐ด + ๐ต) ยท (๐ถ โˆ’ ๐ท))) = ((((๐ต ยท ๐ถ) โˆ’ (๐ด ยท ๐ถ)) โˆ’ (๐ต ยท ๐ถ)) + ((๐ด ยท ๐ท) + (๐ต ยท ๐ท))))
6 simpll 766 . . . . . . . 8 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚)) โ†’ ๐ด โˆˆ โ„‚)
76, 2mulcld 11234 . . . . . . 7 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚)) โ†’ (๐ด ยท ๐ถ) โˆˆ โ„‚)
83, 7, 3sub32d 11603 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚)) โ†’ (((๐ต ยท ๐ถ) โˆ’ (๐ด ยท ๐ถ)) โˆ’ (๐ต ยท ๐ถ)) = (((๐ต ยท ๐ถ) โˆ’ (๐ต ยท ๐ถ)) โˆ’ (๐ด ยท ๐ถ)))
93subidd 11559 . . . . . . 7 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚)) โ†’ ((๐ต ยท ๐ถ) โˆ’ (๐ต ยท ๐ถ)) = 0)
109oveq1d 7424 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚)) โ†’ (((๐ต ยท ๐ถ) โˆ’ (๐ต ยท ๐ถ)) โˆ’ (๐ด ยท ๐ถ)) = (0 โˆ’ (๐ด ยท ๐ถ)))
118, 10eqtrd 2773 . . . . 5 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚)) โ†’ (((๐ต ยท ๐ถ) โˆ’ (๐ด ยท ๐ถ)) โˆ’ (๐ต ยท ๐ถ)) = (0 โˆ’ (๐ด ยท ๐ถ)))
12 df-neg 11447 . . . . 5 -(๐ด ยท ๐ถ) = (0 โˆ’ (๐ด ยท ๐ถ))
1311, 12eqtr4di 2791 . . . 4 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚)) โ†’ (((๐ต ยท ๐ถ) โˆ’ (๐ด ยท ๐ถ)) โˆ’ (๐ต ยท ๐ถ)) = -(๐ด ยท ๐ถ))
1413oveq1d 7424 . . 3 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚)) โ†’ ((((๐ต ยท ๐ถ) โˆ’ (๐ด ยท ๐ถ)) โˆ’ (๐ต ยท ๐ถ)) + ((๐ด ยท ๐ท) + (๐ต ยท ๐ท))) = (-(๐ด ยท ๐ถ) + ((๐ด ยท ๐ท) + (๐ต ยท ๐ท))))
157negcld 11558 . . . . 5 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚)) โ†’ -(๐ด ยท ๐ถ) โˆˆ โ„‚)
16 simprr 772 . . . . . . 7 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚)) โ†’ ๐ท โˆˆ โ„‚)
176, 16mulcld 11234 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚)) โ†’ (๐ด ยท ๐ท) โˆˆ โ„‚)
181, 16mulcld 11234 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚)) โ†’ (๐ต ยท ๐ท) โˆˆ โ„‚)
1917, 18addcld 11233 . . . . 5 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚)) โ†’ ((๐ด ยท ๐ท) + (๐ต ยท ๐ท)) โˆˆ โ„‚)
2015, 19addcomd 11416 . . . 4 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚)) โ†’ (-(๐ด ยท ๐ถ) + ((๐ด ยท ๐ท) + (๐ต ยท ๐ท))) = (((๐ด ยท ๐ท) + (๐ต ยท ๐ท)) + -(๐ด ยท ๐ถ)))
2119, 7negsubd 11577 . . . 4 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚)) โ†’ (((๐ด ยท ๐ท) + (๐ต ยท ๐ท)) + -(๐ด ยท ๐ถ)) = (((๐ด ยท ๐ท) + (๐ต ยท ๐ท)) โˆ’ (๐ด ยท ๐ถ)))
2220, 21eqtrd 2773 . . 3 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚)) โ†’ (-(๐ด ยท ๐ถ) + ((๐ด ยท ๐ท) + (๐ต ยท ๐ท))) = (((๐ด ยท ๐ท) + (๐ต ยท ๐ท)) โˆ’ (๐ด ยท ๐ถ)))
2314, 22eqtrd 2773 . 2 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚)) โ†’ ((((๐ต ยท ๐ถ) โˆ’ (๐ด ยท ๐ถ)) โˆ’ (๐ต ยท ๐ถ)) + ((๐ด ยท ๐ท) + (๐ต ยท ๐ท))) = (((๐ด ยท ๐ท) + (๐ต ยท ๐ท)) โˆ’ (๐ด ยท ๐ถ)))
245, 23eqtrd 2773 1 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚)) โ†’ ((๐ต ยท ๐ถ) โˆ’ ((๐ด + ๐ต) ยท (๐ถ โˆ’ ๐ท))) = (((๐ด ยท ๐ท) + (๐ต ยท ๐ท)) โˆ’ (๐ด ยท ๐ถ)))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 397   = wceq 1542   โˆˆ wcel 2107  (class class class)co 7409  โ„‚cc 11108  0cc0 11110   + caddc 11113   ยท cmul 11115   โˆ’ cmin 11444  -cneg 11445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-ltxr 11253  df-sub 11446  df-neg 11447
This theorem is referenced by:  itscnhlinecirc02plem1  47468
  Copyright terms: Public domain W3C validator