MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recexpr Structured version   Visualization version   GIF version

Theorem recexpr 10670
Description: The reciprocal of a positive real exists. Part of Proposition 9-3.7(v) of [Gleason] p. 124. (Contributed by NM, 15-May-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
recexpr (𝐴P → ∃𝑥P (𝐴 ·P 𝑥) = 1P)
Distinct variable group:   𝑥,𝐴

Proof of Theorem recexpr
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5061 . . . . . 6 (𝑧 = 𝑤 → (𝑧 <Q 𝑦𝑤 <Q 𝑦))
21anbi1d 633 . . . . 5 (𝑧 = 𝑤 → ((𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) ↔ (𝑤 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)))
32exbidv 1929 . . . 4 (𝑧 = 𝑤 → (∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) ↔ ∃𝑦(𝑤 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)))
43cbvabv 2811 . . 3 {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)} = {𝑤 ∣ ∃𝑦(𝑤 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)}
54reclem2pr 10667 . 2 (𝐴P → {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)} ∈ P)
64reclem4pr 10669 . 2 (𝐴P → (𝐴 ·P {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)}) = 1P)
7 oveq2 7226 . . . 4 (𝑥 = {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)} → (𝐴 ·P 𝑥) = (𝐴 ·P {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)}))
87eqeq1d 2739 . . 3 (𝑥 = {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)} → ((𝐴 ·P 𝑥) = 1P ↔ (𝐴 ·P {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)}) = 1P))
98rspcev 3542 . 2 (({𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)} ∈ P ∧ (𝐴 ·P {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)}) = 1P) → ∃𝑥P (𝐴 ·P 𝑥) = 1P)
105, 6, 9syl2anc 587 1 (𝐴P → ∃𝑥P (𝐴 ·P 𝑥) = 1P)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wex 1787  wcel 2110  {cab 2714  wrex 3062   class class class wbr 5058  cfv 6385  (class class class)co 7218  *Qcrq 10476   <Q cltq 10477  Pcnp 10478  1Pc1p 10479   ·P cmp 10481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5197  ax-nul 5204  ax-pow 5263  ax-pr 5327  ax-un 7528  ax-inf2 9261
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3415  df-sbc 3700  df-csb 3817  df-dif 3874  df-un 3876  df-in 3878  df-ss 3888  df-pss 3890  df-nul 4243  df-if 4445  df-pw 4520  df-sn 4547  df-pr 4549  df-tp 4551  df-op 4553  df-uni 4825  df-int 4865  df-iun 4911  df-br 5059  df-opab 5121  df-mpt 5141  df-tr 5167  df-id 5460  df-eprel 5465  df-po 5473  df-so 5474  df-fr 5514  df-we 5516  df-xp 5562  df-rel 5563  df-cnv 5564  df-co 5565  df-dm 5566  df-rn 5567  df-res 5568  df-ima 5569  df-pred 6165  df-ord 6221  df-on 6222  df-lim 6223  df-suc 6224  df-iota 6343  df-fun 6387  df-fn 6388  df-f 6389  df-f1 6390  df-fo 6391  df-f1o 6392  df-fv 6393  df-ov 7221  df-oprab 7222  df-mpo 7223  df-om 7650  df-1st 7766  df-2nd 7767  df-wrecs 8052  df-recs 8113  df-rdg 8151  df-1o 8207  df-oadd 8211  df-omul 8212  df-er 8396  df-ni 10491  df-pli 10492  df-mi 10493  df-lti 10494  df-plpq 10527  df-mpq 10528  df-ltpq 10529  df-enq 10530  df-nq 10531  df-erq 10532  df-plq 10533  df-mq 10534  df-1nq 10535  df-rq 10536  df-ltnq 10537  df-np 10600  df-1p 10601  df-mp 10603
This theorem is referenced by:  recexsrlem  10722
  Copyright terms: Public domain W3C validator