| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > recexpr | Structured version Visualization version GIF version | ||
| Description: The reciprocal of a positive real exists. Part of Proposition 9-3.7(v) of [Gleason] p. 124. (Contributed by NM, 15-May-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| recexpr | ⊢ (𝐴 ∈ P → ∃𝑥 ∈ P (𝐴 ·P 𝑥) = 1P) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5092 | . . . . . 6 ⊢ (𝑧 = 𝑤 → (𝑧 <Q 𝑦 ↔ 𝑤 <Q 𝑦)) | |
| 2 | 1 | anbi1d 631 | . . . . 5 ⊢ (𝑧 = 𝑤 → ((𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴) ↔ (𝑤 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴))) |
| 3 | 2 | exbidv 1922 | . . . 4 ⊢ (𝑧 = 𝑤 → (∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴) ↔ ∃𝑦(𝑤 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴))) |
| 4 | 3 | cbvabv 2801 | . . 3 ⊢ {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)} = {𝑤 ∣ ∃𝑦(𝑤 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)} |
| 5 | 4 | reclem2pr 10939 | . 2 ⊢ (𝐴 ∈ P → {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)} ∈ P) |
| 6 | 4 | reclem4pr 10941 | . 2 ⊢ (𝐴 ∈ P → (𝐴 ·P {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)}) = 1P) |
| 7 | oveq2 7354 | . . . 4 ⊢ (𝑥 = {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)} → (𝐴 ·P 𝑥) = (𝐴 ·P {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)})) | |
| 8 | 7 | eqeq1d 2733 | . . 3 ⊢ (𝑥 = {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)} → ((𝐴 ·P 𝑥) = 1P ↔ (𝐴 ·P {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)}) = 1P)) |
| 9 | 8 | rspcev 3572 | . 2 ⊢ (({𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)} ∈ P ∧ (𝐴 ·P {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)}) = 1P) → ∃𝑥 ∈ P (𝐴 ·P 𝑥) = 1P) |
| 10 | 5, 6, 9 | syl2anc 584 | 1 ⊢ (𝐴 ∈ P → ∃𝑥 ∈ P (𝐴 ·P 𝑥) = 1P) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 {cab 2709 ∃wrex 3056 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 *Qcrq 10748 <Q cltq 10749 Pcnp 10750 1Pc1p 10751 ·P cmp 10753 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-omul 8390 df-er 8622 df-ni 10763 df-pli 10764 df-mi 10765 df-lti 10766 df-plpq 10799 df-mpq 10800 df-ltpq 10801 df-enq 10802 df-nq 10803 df-erq 10804 df-plq 10805 df-mq 10806 df-1nq 10807 df-rq 10808 df-ltnq 10809 df-np 10872 df-1p 10873 df-mp 10875 |
| This theorem is referenced by: recexsrlem 10994 |
| Copyright terms: Public domain | W3C validator |