MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recexpr Structured version   Visualization version   GIF version

Theorem recexpr 10473
Description: The reciprocal of a positive real exists. Part of Proposition 9-3.7(v) of [Gleason] p. 124. (Contributed by NM, 15-May-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
recexpr (𝐴P → ∃𝑥P (𝐴 ·P 𝑥) = 1P)
Distinct variable group:   𝑥,𝐴

Proof of Theorem recexpr
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5069 . . . . . 6 (𝑧 = 𝑤 → (𝑧 <Q 𝑦𝑤 <Q 𝑦))
21anbi1d 631 . . . . 5 (𝑧 = 𝑤 → ((𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) ↔ (𝑤 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)))
32exbidv 1922 . . . 4 (𝑧 = 𝑤 → (∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) ↔ ∃𝑦(𝑤 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)))
43cbvabv 2889 . . 3 {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)} = {𝑤 ∣ ∃𝑦(𝑤 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)}
54reclem2pr 10470 . 2 (𝐴P → {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)} ∈ P)
64reclem4pr 10472 . 2 (𝐴P → (𝐴 ·P {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)}) = 1P)
7 oveq2 7164 . . . 4 (𝑥 = {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)} → (𝐴 ·P 𝑥) = (𝐴 ·P {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)}))
87eqeq1d 2823 . . 3 (𝑥 = {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)} → ((𝐴 ·P 𝑥) = 1P ↔ (𝐴 ·P {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)}) = 1P))
98rspcev 3623 . 2 (({𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)} ∈ P ∧ (𝐴 ·P {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)}) = 1P) → ∃𝑥P (𝐴 ·P 𝑥) = 1P)
105, 6, 9syl2anc 586 1 (𝐴P → ∃𝑥P (𝐴 ·P 𝑥) = 1P)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wex 1780  wcel 2114  {cab 2799  wrex 3139   class class class wbr 5066  cfv 6355  (class class class)co 7156  *Qcrq 10279   <Q cltq 10280  Pcnp 10281  1Pc1p 10282   ·P cmp 10284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-omul 8107  df-er 8289  df-ni 10294  df-pli 10295  df-mi 10296  df-lti 10297  df-plpq 10330  df-mpq 10331  df-ltpq 10332  df-enq 10333  df-nq 10334  df-erq 10335  df-plq 10336  df-mq 10337  df-1nq 10338  df-rq 10339  df-ltnq 10340  df-np 10403  df-1p 10404  df-mp 10406
This theorem is referenced by:  recexsrlem  10525
  Copyright terms: Public domain W3C validator