Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > recexpr | Structured version Visualization version GIF version |
Description: The reciprocal of a positive real exists. Part of Proposition 9-3.7(v) of [Gleason] p. 124. (Contributed by NM, 15-May-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
recexpr | ⊢ (𝐴 ∈ P → ∃𝑥 ∈ P (𝐴 ·P 𝑥) = 1P) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5061 | . . . . . 6 ⊢ (𝑧 = 𝑤 → (𝑧 <Q 𝑦 ↔ 𝑤 <Q 𝑦)) | |
2 | 1 | anbi1d 633 | . . . . 5 ⊢ (𝑧 = 𝑤 → ((𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴) ↔ (𝑤 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴))) |
3 | 2 | exbidv 1929 | . . . 4 ⊢ (𝑧 = 𝑤 → (∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴) ↔ ∃𝑦(𝑤 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴))) |
4 | 3 | cbvabv 2811 | . . 3 ⊢ {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)} = {𝑤 ∣ ∃𝑦(𝑤 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)} |
5 | 4 | reclem2pr 10667 | . 2 ⊢ (𝐴 ∈ P → {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)} ∈ P) |
6 | 4 | reclem4pr 10669 | . 2 ⊢ (𝐴 ∈ P → (𝐴 ·P {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)}) = 1P) |
7 | oveq2 7226 | . . . 4 ⊢ (𝑥 = {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)} → (𝐴 ·P 𝑥) = (𝐴 ·P {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)})) | |
8 | 7 | eqeq1d 2739 | . . 3 ⊢ (𝑥 = {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)} → ((𝐴 ·P 𝑥) = 1P ↔ (𝐴 ·P {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)}) = 1P)) |
9 | 8 | rspcev 3542 | . 2 ⊢ (({𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)} ∈ P ∧ (𝐴 ·P {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)}) = 1P) → ∃𝑥 ∈ P (𝐴 ·P 𝑥) = 1P) |
10 | 5, 6, 9 | syl2anc 587 | 1 ⊢ (𝐴 ∈ P → ∃𝑥 ∈ P (𝐴 ·P 𝑥) = 1P) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1543 ∃wex 1787 ∈ wcel 2110 {cab 2714 ∃wrex 3062 class class class wbr 5058 ‘cfv 6385 (class class class)co 7218 *Qcrq 10476 <Q cltq 10477 Pcnp 10478 1Pc1p 10479 ·P cmp 10481 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5197 ax-nul 5204 ax-pow 5263 ax-pr 5327 ax-un 7528 ax-inf2 9261 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3415 df-sbc 3700 df-csb 3817 df-dif 3874 df-un 3876 df-in 3878 df-ss 3888 df-pss 3890 df-nul 4243 df-if 4445 df-pw 4520 df-sn 4547 df-pr 4549 df-tp 4551 df-op 4553 df-uni 4825 df-int 4865 df-iun 4911 df-br 5059 df-opab 5121 df-mpt 5141 df-tr 5167 df-id 5460 df-eprel 5465 df-po 5473 df-so 5474 df-fr 5514 df-we 5516 df-xp 5562 df-rel 5563 df-cnv 5564 df-co 5565 df-dm 5566 df-rn 5567 df-res 5568 df-ima 5569 df-pred 6165 df-ord 6221 df-on 6222 df-lim 6223 df-suc 6224 df-iota 6343 df-fun 6387 df-fn 6388 df-f 6389 df-f1 6390 df-fo 6391 df-f1o 6392 df-fv 6393 df-ov 7221 df-oprab 7222 df-mpo 7223 df-om 7650 df-1st 7766 df-2nd 7767 df-wrecs 8052 df-recs 8113 df-rdg 8151 df-1o 8207 df-oadd 8211 df-omul 8212 df-er 8396 df-ni 10491 df-pli 10492 df-mi 10493 df-lti 10494 df-plpq 10527 df-mpq 10528 df-ltpq 10529 df-enq 10530 df-nq 10531 df-erq 10532 df-plq 10533 df-mq 10534 df-1nq 10535 df-rq 10536 df-ltnq 10537 df-np 10600 df-1p 10601 df-mp 10603 |
This theorem is referenced by: recexsrlem 10722 |
Copyright terms: Public domain | W3C validator |