MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recexpr Structured version   Visualization version   GIF version

Theorem recexpr 11041
Description: The reciprocal of a positive real exists. Part of Proposition 9-3.7(v) of [Gleason] p. 124. (Contributed by NM, 15-May-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
recexpr (๐ด โˆˆ P โ†’ โˆƒ๐‘ฅ โˆˆ P (๐ด ยทP ๐‘ฅ) = 1P)
Distinct variable group:   ๐‘ฅ,๐ด

Proof of Theorem recexpr
Dummy variables ๐‘ฆ ๐‘ง ๐‘ค are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5141 . . . . . 6 (๐‘ง = ๐‘ค โ†’ (๐‘ง <Q ๐‘ฆ โ†” ๐‘ค <Q ๐‘ฆ))
21anbi1d 629 . . . . 5 (๐‘ง = ๐‘ค โ†’ ((๐‘ง <Q ๐‘ฆ โˆง ยฌ (*Qโ€˜๐‘ฆ) โˆˆ ๐ด) โ†” (๐‘ค <Q ๐‘ฆ โˆง ยฌ (*Qโ€˜๐‘ฆ) โˆˆ ๐ด)))
32exbidv 1916 . . . 4 (๐‘ง = ๐‘ค โ†’ (โˆƒ๐‘ฆ(๐‘ง <Q ๐‘ฆ โˆง ยฌ (*Qโ€˜๐‘ฆ) โˆˆ ๐ด) โ†” โˆƒ๐‘ฆ(๐‘ค <Q ๐‘ฆ โˆง ยฌ (*Qโ€˜๐‘ฆ) โˆˆ ๐ด)))
43cbvabv 2797 . . 3 {๐‘ง โˆฃ โˆƒ๐‘ฆ(๐‘ง <Q ๐‘ฆ โˆง ยฌ (*Qโ€˜๐‘ฆ) โˆˆ ๐ด)} = {๐‘ค โˆฃ โˆƒ๐‘ฆ(๐‘ค <Q ๐‘ฆ โˆง ยฌ (*Qโ€˜๐‘ฆ) โˆˆ ๐ด)}
54reclem2pr 11038 . 2 (๐ด โˆˆ P โ†’ {๐‘ง โˆฃ โˆƒ๐‘ฆ(๐‘ง <Q ๐‘ฆ โˆง ยฌ (*Qโ€˜๐‘ฆ) โˆˆ ๐ด)} โˆˆ P)
64reclem4pr 11040 . 2 (๐ด โˆˆ P โ†’ (๐ด ยทP {๐‘ง โˆฃ โˆƒ๐‘ฆ(๐‘ง <Q ๐‘ฆ โˆง ยฌ (*Qโ€˜๐‘ฆ) โˆˆ ๐ด)}) = 1P)
7 oveq2 7409 . . . 4 (๐‘ฅ = {๐‘ง โˆฃ โˆƒ๐‘ฆ(๐‘ง <Q ๐‘ฆ โˆง ยฌ (*Qโ€˜๐‘ฆ) โˆˆ ๐ด)} โ†’ (๐ด ยทP ๐‘ฅ) = (๐ด ยทP {๐‘ง โˆฃ โˆƒ๐‘ฆ(๐‘ง <Q ๐‘ฆ โˆง ยฌ (*Qโ€˜๐‘ฆ) โˆˆ ๐ด)}))
87eqeq1d 2726 . . 3 (๐‘ฅ = {๐‘ง โˆฃ โˆƒ๐‘ฆ(๐‘ง <Q ๐‘ฆ โˆง ยฌ (*Qโ€˜๐‘ฆ) โˆˆ ๐ด)} โ†’ ((๐ด ยทP ๐‘ฅ) = 1P โ†” (๐ด ยทP {๐‘ง โˆฃ โˆƒ๐‘ฆ(๐‘ง <Q ๐‘ฆ โˆง ยฌ (*Qโ€˜๐‘ฆ) โˆˆ ๐ด)}) = 1P))
98rspcev 3604 . 2 (({๐‘ง โˆฃ โˆƒ๐‘ฆ(๐‘ง <Q ๐‘ฆ โˆง ยฌ (*Qโ€˜๐‘ฆ) โˆˆ ๐ด)} โˆˆ P โˆง (๐ด ยทP {๐‘ง โˆฃ โˆƒ๐‘ฆ(๐‘ง <Q ๐‘ฆ โˆง ยฌ (*Qโ€˜๐‘ฆ) โˆˆ ๐ด)}) = 1P) โ†’ โˆƒ๐‘ฅ โˆˆ P (๐ด ยทP ๐‘ฅ) = 1P)
105, 6, 9syl2anc 583 1 (๐ด โˆˆ P โ†’ โˆƒ๐‘ฅ โˆˆ P (๐ด ยทP ๐‘ฅ) = 1P)
Colors of variables: wff setvar class
Syntax hints:  ยฌ wn 3   โ†’ wi 4   โˆง wa 395   = wceq 1533  โˆƒwex 1773   โˆˆ wcel 2098  {cab 2701  โˆƒwrex 3062   class class class wbr 5138  โ€˜cfv 6533  (class class class)co 7401  *Qcrq 10847   <Q cltq 10848  Pcnp 10849  1Pc1p 10850   ยทP cmp 10852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-inf2 9631
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-oadd 8465  df-omul 8466  df-er 8698  df-ni 10862  df-pli 10863  df-mi 10864  df-lti 10865  df-plpq 10898  df-mpq 10899  df-ltpq 10900  df-enq 10901  df-nq 10902  df-erq 10903  df-plq 10904  df-mq 10905  df-1nq 10906  df-rq 10907  df-ltnq 10908  df-np 10971  df-1p 10972  df-mp 10974
This theorem is referenced by:  recexsrlem  11093
  Copyright terms: Public domain W3C validator