MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recexpr Structured version   Visualization version   GIF version

Theorem recexpr 10942
Description: The reciprocal of a positive real exists. Part of Proposition 9-3.7(v) of [Gleason] p. 124. (Contributed by NM, 15-May-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
recexpr (𝐴P → ∃𝑥P (𝐴 ·P 𝑥) = 1P)
Distinct variable group:   𝑥,𝐴

Proof of Theorem recexpr
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5092 . . . . . 6 (𝑧 = 𝑤 → (𝑧 <Q 𝑦𝑤 <Q 𝑦))
21anbi1d 631 . . . . 5 (𝑧 = 𝑤 → ((𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) ↔ (𝑤 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)))
32exbidv 1922 . . . 4 (𝑧 = 𝑤 → (∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) ↔ ∃𝑦(𝑤 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)))
43cbvabv 2801 . . 3 {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)} = {𝑤 ∣ ∃𝑦(𝑤 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)}
54reclem2pr 10939 . 2 (𝐴P → {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)} ∈ P)
64reclem4pr 10941 . 2 (𝐴P → (𝐴 ·P {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)}) = 1P)
7 oveq2 7354 . . . 4 (𝑥 = {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)} → (𝐴 ·P 𝑥) = (𝐴 ·P {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)}))
87eqeq1d 2733 . . 3 (𝑥 = {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)} → ((𝐴 ·P 𝑥) = 1P ↔ (𝐴 ·P {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)}) = 1P))
98rspcev 3572 . 2 (({𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)} ∈ P ∧ (𝐴 ·P {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)}) = 1P) → ∃𝑥P (𝐴 ·P 𝑥) = 1P)
105, 6, 9syl2anc 584 1 (𝐴P → ∃𝑥P (𝐴 ·P 𝑥) = 1P)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2111  {cab 2709  wrex 3056   class class class wbr 5089  cfv 6481  (class class class)co 7346  *Qcrq 10748   <Q cltq 10749  Pcnp 10750  1Pc1p 10751   ·P cmp 10753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-omul 8390  df-er 8622  df-ni 10763  df-pli 10764  df-mi 10765  df-lti 10766  df-plpq 10799  df-mpq 10800  df-ltpq 10801  df-enq 10802  df-nq 10803  df-erq 10804  df-plq 10805  df-mq 10806  df-1nq 10807  df-rq 10808  df-ltnq 10809  df-np 10872  df-1p 10873  df-mp 10875
This theorem is referenced by:  recexsrlem  10994
  Copyright terms: Public domain W3C validator