Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > recexpr | Structured version Visualization version GIF version |
Description: The reciprocal of a positive real exists. Part of Proposition 9-3.7(v) of [Gleason] p. 124. (Contributed by NM, 15-May-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
recexpr | ⊢ (𝐴 ∈ P → ∃𝑥 ∈ P (𝐴 ·P 𝑥) = 1P) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5073 | . . . . . 6 ⊢ (𝑧 = 𝑤 → (𝑧 <Q 𝑦 ↔ 𝑤 <Q 𝑦)) | |
2 | 1 | anbi1d 629 | . . . . 5 ⊢ (𝑧 = 𝑤 → ((𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴) ↔ (𝑤 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴))) |
3 | 2 | exbidv 1925 | . . . 4 ⊢ (𝑧 = 𝑤 → (∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴) ↔ ∃𝑦(𝑤 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴))) |
4 | 3 | cbvabv 2812 | . . 3 ⊢ {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)} = {𝑤 ∣ ∃𝑦(𝑤 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)} |
5 | 4 | reclem2pr 10735 | . 2 ⊢ (𝐴 ∈ P → {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)} ∈ P) |
6 | 4 | reclem4pr 10737 | . 2 ⊢ (𝐴 ∈ P → (𝐴 ·P {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)}) = 1P) |
7 | oveq2 7263 | . . . 4 ⊢ (𝑥 = {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)} → (𝐴 ·P 𝑥) = (𝐴 ·P {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)})) | |
8 | 7 | eqeq1d 2740 | . . 3 ⊢ (𝑥 = {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)} → ((𝐴 ·P 𝑥) = 1P ↔ (𝐴 ·P {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)}) = 1P)) |
9 | 8 | rspcev 3552 | . 2 ⊢ (({𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)} ∈ P ∧ (𝐴 ·P {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)}) = 1P) → ∃𝑥 ∈ P (𝐴 ·P 𝑥) = 1P) |
10 | 5, 6, 9 | syl2anc 583 | 1 ⊢ (𝐴 ∈ P → ∃𝑥 ∈ P (𝐴 ·P 𝑥) = 1P) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 {cab 2715 ∃wrex 3064 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 *Qcrq 10544 <Q cltq 10545 Pcnp 10546 1Pc1p 10547 ·P cmp 10549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-omul 8272 df-er 8456 df-ni 10559 df-pli 10560 df-mi 10561 df-lti 10562 df-plpq 10595 df-mpq 10596 df-ltpq 10597 df-enq 10598 df-nq 10599 df-erq 10600 df-plq 10601 df-mq 10602 df-1nq 10603 df-rq 10604 df-ltnq 10605 df-np 10668 df-1p 10669 df-mp 10671 |
This theorem is referenced by: recexsrlem 10790 |
Copyright terms: Public domain | W3C validator |