MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recexpr Structured version   Visualization version   GIF version

Theorem recexpr 10945
Description: The reciprocal of a positive real exists. Part of Proposition 9-3.7(v) of [Gleason] p. 124. (Contributed by NM, 15-May-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
recexpr (𝐴P → ∃𝑥P (𝐴 ·P 𝑥) = 1P)
Distinct variable group:   𝑥,𝐴

Proof of Theorem recexpr
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5095 . . . . . 6 (𝑧 = 𝑤 → (𝑧 <Q 𝑦𝑤 <Q 𝑦))
21anbi1d 631 . . . . 5 (𝑧 = 𝑤 → ((𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) ↔ (𝑤 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)))
32exbidv 1921 . . . 4 (𝑧 = 𝑤 → (∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) ↔ ∃𝑦(𝑤 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)))
43cbvabv 2799 . . 3 {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)} = {𝑤 ∣ ∃𝑦(𝑤 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)}
54reclem2pr 10942 . 2 (𝐴P → {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)} ∈ P)
64reclem4pr 10944 . 2 (𝐴P → (𝐴 ·P {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)}) = 1P)
7 oveq2 7357 . . . 4 (𝑥 = {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)} → (𝐴 ·P 𝑥) = (𝐴 ·P {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)}))
87eqeq1d 2731 . . 3 (𝑥 = {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)} → ((𝐴 ·P 𝑥) = 1P ↔ (𝐴 ·P {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)}) = 1P))
98rspcev 3577 . 2 (({𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)} ∈ P ∧ (𝐴 ·P {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)}) = 1P) → ∃𝑥P (𝐴 ·P 𝑥) = 1P)
105, 6, 9syl2anc 584 1 (𝐴P → ∃𝑥P (𝐴 ·P 𝑥) = 1P)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wrex 3053   class class class wbr 5092  cfv 6482  (class class class)co 7349  *Qcrq 10751   <Q cltq 10752  Pcnp 10753  1Pc1p 10754   ·P cmp 10756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-oadd 8392  df-omul 8393  df-er 8625  df-ni 10766  df-pli 10767  df-mi 10768  df-lti 10769  df-plpq 10802  df-mpq 10803  df-ltpq 10804  df-enq 10805  df-nq 10806  df-erq 10807  df-plq 10808  df-mq 10809  df-1nq 10810  df-rq 10811  df-ltnq 10812  df-np 10875  df-1p 10876  df-mp 10878
This theorem is referenced by:  recexsrlem  10997
  Copyright terms: Public domain W3C validator