| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > recexpr | Structured version Visualization version GIF version | ||
| Description: The reciprocal of a positive real exists. Part of Proposition 9-3.7(v) of [Gleason] p. 124. (Contributed by NM, 15-May-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| recexpr | ⊢ (𝐴 ∈ P → ∃𝑥 ∈ P (𝐴 ·P 𝑥) = 1P) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5122 | . . . . . 6 ⊢ (𝑧 = 𝑤 → (𝑧 <Q 𝑦 ↔ 𝑤 <Q 𝑦)) | |
| 2 | 1 | anbi1d 631 | . . . . 5 ⊢ (𝑧 = 𝑤 → ((𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴) ↔ (𝑤 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴))) |
| 3 | 2 | exbidv 1921 | . . . 4 ⊢ (𝑧 = 𝑤 → (∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴) ↔ ∃𝑦(𝑤 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴))) |
| 4 | 3 | cbvabv 2805 | . . 3 ⊢ {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)} = {𝑤 ∣ ∃𝑦(𝑤 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)} |
| 5 | 4 | reclem2pr 11062 | . 2 ⊢ (𝐴 ∈ P → {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)} ∈ P) |
| 6 | 4 | reclem4pr 11064 | . 2 ⊢ (𝐴 ∈ P → (𝐴 ·P {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)}) = 1P) |
| 7 | oveq2 7413 | . . . 4 ⊢ (𝑥 = {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)} → (𝐴 ·P 𝑥) = (𝐴 ·P {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)})) | |
| 8 | 7 | eqeq1d 2737 | . . 3 ⊢ (𝑥 = {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)} → ((𝐴 ·P 𝑥) = 1P ↔ (𝐴 ·P {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)}) = 1P)) |
| 9 | 8 | rspcev 3601 | . 2 ⊢ (({𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)} ∈ P ∧ (𝐴 ·P {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)}) = 1P) → ∃𝑥 ∈ P (𝐴 ·P 𝑥) = 1P) |
| 10 | 5, 6, 9 | syl2anc 584 | 1 ⊢ (𝐴 ∈ P → ∃𝑥 ∈ P (𝐴 ·P 𝑥) = 1P) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 {cab 2713 ∃wrex 3060 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 *Qcrq 10871 <Q cltq 10872 Pcnp 10873 1Pc1p 10874 ·P cmp 10876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-omul 8485 df-er 8719 df-ni 10886 df-pli 10887 df-mi 10888 df-lti 10889 df-plpq 10922 df-mpq 10923 df-ltpq 10924 df-enq 10925 df-nq 10926 df-erq 10927 df-plq 10928 df-mq 10929 df-1nq 10930 df-rq 10931 df-ltnq 10932 df-np 10995 df-1p 10996 df-mp 10998 |
| This theorem is referenced by: recexsrlem 11117 |
| Copyright terms: Public domain | W3C validator |