Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlnid Structured version   Visualization version   GIF version

Theorem trlnid 39050
Description: Different translations with the same trace cannot be the identity. (Contributed by NM, 26-Jul-2013.)
Hypotheses
Ref Expression
trlnid.b 𝐵 = (Base‘𝐾)
trlnid.h 𝐻 = (LHyp‘𝐾)
trlnid.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlnid.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlnid (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) → 𝐹 ≠ ( I ↾ 𝐵))

Proof of Theorem trlnid
StepHypRef Expression
1 simp3l 1202 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) → 𝐹𝐺)
2 simp1 1137 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simp2l 1200 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) → 𝐹𝑇)
4 trlnid.b . . . . . 6 𝐵 = (Base‘𝐾)
5 eqid 2733 . . . . . 6 (0.‘𝐾) = (0.‘𝐾)
6 trlnid.h . . . . . 6 𝐻 = (LHyp‘𝐾)
7 trlnid.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 trlnid.r . . . . . 6 𝑅 = ((trL‘𝐾)‘𝑊)
94, 5, 6, 7, 8trlid0b 39049 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐹 = ( I ↾ 𝐵) ↔ (𝑅𝐹) = (0.‘𝐾)))
102, 3, 9syl2anc 585 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) → (𝐹 = ( I ↾ 𝐵) ↔ (𝑅𝐹) = (0.‘𝐾)))
1110biimpar 479 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝐹 = ( I ↾ 𝐵))
12 simp3r 1203 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) → (𝑅𝐹) = (𝑅𝐺))
1312eqeq1d 2735 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) → ((𝑅𝐹) = (0.‘𝐾) ↔ (𝑅𝐺) = (0.‘𝐾)))
1413biimpa 478 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝑅𝐺) = (0.‘𝐾))
15 simpl1 1192 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
16 simpl2r 1228 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝐺𝑇)
174, 5, 6, 7, 8trlid0b 39049 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝐺 = ( I ↾ 𝐵) ↔ (𝑅𝐺) = (0.‘𝐾)))
1815, 16, 17syl2anc 585 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝐺 = ( I ↾ 𝐵) ↔ (𝑅𝐺) = (0.‘𝐾)))
1914, 18mpbird 257 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝐺 = ( I ↾ 𝐵))
2011, 19eqtr4d 2776 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝐹 = 𝐺)
2120ex 414 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) → ((𝑅𝐹) = (0.‘𝐾) → 𝐹 = 𝐺))
2210, 21sylbid 239 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) → (𝐹 = ( I ↾ 𝐵) → 𝐹 = 𝐺))
2322necon3d 2962 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) → (𝐹𝐺𝐹 ≠ ( I ↾ 𝐵)))
241, 23mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) → 𝐹 ≠ ( I ↾ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2941   I cid 5574  cres 5679  cfv 6544  Basecbs 17144  0.cp0 18376  HLchlt 38220  LHypclh 38855  LTrncltrn 38972  trLctrl 39029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-map 8822  df-proset 18248  df-poset 18266  df-plt 18283  df-lub 18299  df-glb 18300  df-join 18301  df-meet 18302  df-p0 18378  df-p1 18379  df-lat 18385  df-clat 18452  df-oposet 38046  df-ol 38048  df-oml 38049  df-covers 38136  df-ats 38137  df-atl 38168  df-cvlat 38192  df-hlat 38221  df-lhyp 38859  df-laut 38860  df-ldil 38975  df-ltrn 38976  df-trl 39030
This theorem is referenced by:  cdlemk43N  39834  cdlemk35u  39835  cdlemk55u1  39836  cdlemk39u1  39838  cdlemk19u1  39840
  Copyright terms: Public domain W3C validator