Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlnid Structured version   Visualization version   GIF version

Theorem trlnid 36191
Description: Different translations with the same trace cannot be the identity. (Contributed by NM, 26-Jul-2013.)
Hypotheses
Ref Expression
trlnid.b 𝐵 = (Base‘𝐾)
trlnid.h 𝐻 = (LHyp‘𝐾)
trlnid.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlnid.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlnid (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) → 𝐹 ≠ ( I ↾ 𝐵))

Proof of Theorem trlnid
StepHypRef Expression
1 simp3l 1259 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) → 𝐹𝐺)
2 simp1 1167 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simp2l 1257 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) → 𝐹𝑇)
4 trlnid.b . . . . . 6 𝐵 = (Base‘𝐾)
5 eqid 2797 . . . . . 6 (0.‘𝐾) = (0.‘𝐾)
6 trlnid.h . . . . . 6 𝐻 = (LHyp‘𝐾)
7 trlnid.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 trlnid.r . . . . . 6 𝑅 = ((trL‘𝐾)‘𝑊)
94, 5, 6, 7, 8trlid0b 36190 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐹 = ( I ↾ 𝐵) ↔ (𝑅𝐹) = (0.‘𝐾)))
102, 3, 9syl2anc 580 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) → (𝐹 = ( I ↾ 𝐵) ↔ (𝑅𝐹) = (0.‘𝐾)))
1110biimpar 470 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝐹 = ( I ↾ 𝐵))
12 simp3r 1260 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) → (𝑅𝐹) = (𝑅𝐺))
1312eqeq1d 2799 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) → ((𝑅𝐹) = (0.‘𝐾) ↔ (𝑅𝐺) = (0.‘𝐾)))
1413biimpa 469 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝑅𝐺) = (0.‘𝐾))
15 simpl1 1243 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
16 simpl2r 1300 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝐺𝑇)
174, 5, 6, 7, 8trlid0b 36190 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝐺 = ( I ↾ 𝐵) ↔ (𝑅𝐺) = (0.‘𝐾)))
1815, 16, 17syl2anc 580 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝐺 = ( I ↾ 𝐵) ↔ (𝑅𝐺) = (0.‘𝐾)))
1914, 18mpbird 249 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝐺 = ( I ↾ 𝐵))
2011, 19eqtr4d 2834 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝐹 = 𝐺)
2120ex 402 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) → ((𝑅𝐹) = (0.‘𝐾) → 𝐹 = 𝐺))
2210, 21sylbid 232 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) → (𝐹 = ( I ↾ 𝐵) → 𝐹 = 𝐺))
2322necon3d 2990 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) → (𝐹𝐺𝐹 ≠ ( I ↾ 𝐵)))
241, 23mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) → 𝐹 ≠ ( I ↾ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  w3a 1108   = wceq 1653  wcel 2157  wne 2969   I cid 5217  cres 5312  cfv 6099  Basecbs 16180  0.cp0 17348  HLchlt 35362  LHypclh 35996  LTrncltrn 36113  trLctrl 36170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2375  ax-ext 2775  ax-rep 4962  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-ral 3092  df-rex 3093  df-reu 3094  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-op 4373  df-uni 4627  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-id 5218  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-map 8095  df-proset 17239  df-poset 17257  df-plt 17269  df-lub 17285  df-glb 17286  df-join 17287  df-meet 17288  df-p0 17350  df-p1 17351  df-lat 17357  df-clat 17419  df-oposet 35188  df-ol 35190  df-oml 35191  df-covers 35278  df-ats 35279  df-atl 35310  df-cvlat 35334  df-hlat 35363  df-lhyp 36000  df-laut 36001  df-ldil 36116  df-ltrn 36117  df-trl 36171
This theorem is referenced by:  cdlemk43N  36975  cdlemk35u  36976  cdlemk55u1  36977  cdlemk39u1  36979  cdlemk19u1  36981
  Copyright terms: Public domain W3C validator