Proof of Theorem trlnid
Step | Hyp | Ref
| Expression |
1 | | simp3l 1199 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ 𝐺 ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) → 𝐹 ≠ 𝐺) |
2 | | simp1 1134 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ 𝐺 ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
3 | | simp2l 1197 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ 𝐺 ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) → 𝐹 ∈ 𝑇) |
4 | | trlnid.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐾) |
5 | | eqid 2759 |
. . . . . 6
⊢
(0.‘𝐾) =
(0.‘𝐾) |
6 | | trlnid.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
7 | | trlnid.t |
. . . . . 6
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
8 | | trlnid.r |
. . . . . 6
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
9 | 4, 5, 6, 7, 8 | trlid0b 37744 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝐹 = ( I ↾ 𝐵) ↔ (𝑅‘𝐹) = (0.‘𝐾))) |
10 | 2, 3, 9 | syl2anc 588 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ 𝐺 ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) → (𝐹 = ( I ↾ 𝐵) ↔ (𝑅‘𝐹) = (0.‘𝐾))) |
11 | 10 | biimpar 482 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ 𝐺 ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) ∧ (𝑅‘𝐹) = (0.‘𝐾)) → 𝐹 = ( I ↾ 𝐵)) |
12 | | simp3r 1200 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ 𝐺 ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) → (𝑅‘𝐹) = (𝑅‘𝐺)) |
13 | 12 | eqeq1d 2761 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ 𝐺 ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) → ((𝑅‘𝐹) = (0.‘𝐾) ↔ (𝑅‘𝐺) = (0.‘𝐾))) |
14 | 13 | biimpa 481 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ 𝐺 ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) ∧ (𝑅‘𝐹) = (0.‘𝐾)) → (𝑅‘𝐺) = (0.‘𝐾)) |
15 | | simpl1 1189 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ 𝐺 ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) ∧ (𝑅‘𝐹) = (0.‘𝐾)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
16 | | simpl2r 1225 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ 𝐺 ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) ∧ (𝑅‘𝐹) = (0.‘𝐾)) → 𝐺 ∈ 𝑇) |
17 | 4, 5, 6, 7, 8 | trlid0b 37744 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) → (𝐺 = ( I ↾ 𝐵) ↔ (𝑅‘𝐺) = (0.‘𝐾))) |
18 | 15, 16, 17 | syl2anc 588 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ 𝐺 ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) ∧ (𝑅‘𝐹) = (0.‘𝐾)) → (𝐺 = ( I ↾ 𝐵) ↔ (𝑅‘𝐺) = (0.‘𝐾))) |
19 | 14, 18 | mpbird 260 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ 𝐺 ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) ∧ (𝑅‘𝐹) = (0.‘𝐾)) → 𝐺 = ( I ↾ 𝐵)) |
20 | 11, 19 | eqtr4d 2797 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ 𝐺 ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) ∧ (𝑅‘𝐹) = (0.‘𝐾)) → 𝐹 = 𝐺) |
21 | 20 | ex 417 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ 𝐺 ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) → ((𝑅‘𝐹) = (0.‘𝐾) → 𝐹 = 𝐺)) |
22 | 10, 21 | sylbid 243 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ 𝐺 ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) → (𝐹 = ( I ↾ 𝐵) → 𝐹 = 𝐺)) |
23 | 22 | necon3d 2973 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ 𝐺 ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) → (𝐹 ≠ 𝐺 → 𝐹 ≠ ( I ↾ 𝐵))) |
24 | 1, 23 | mpd 15 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ 𝐺 ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) → 𝐹 ≠ ( I ↾ 𝐵)) |