Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlnid Structured version   Visualization version   GIF version

Theorem trlnid 38193
Description: Different translations with the same trace cannot be the identity. (Contributed by NM, 26-Jul-2013.)
Hypotheses
Ref Expression
trlnid.b 𝐵 = (Base‘𝐾)
trlnid.h 𝐻 = (LHyp‘𝐾)
trlnid.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlnid.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlnid (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) → 𝐹 ≠ ( I ↾ 𝐵))

Proof of Theorem trlnid
StepHypRef Expression
1 simp3l 1200 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) → 𝐹𝐺)
2 simp1 1135 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simp2l 1198 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) → 𝐹𝑇)
4 trlnid.b . . . . . 6 𝐵 = (Base‘𝐾)
5 eqid 2738 . . . . . 6 (0.‘𝐾) = (0.‘𝐾)
6 trlnid.h . . . . . 6 𝐻 = (LHyp‘𝐾)
7 trlnid.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 trlnid.r . . . . . 6 𝑅 = ((trL‘𝐾)‘𝑊)
94, 5, 6, 7, 8trlid0b 38192 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐹 = ( I ↾ 𝐵) ↔ (𝑅𝐹) = (0.‘𝐾)))
102, 3, 9syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) → (𝐹 = ( I ↾ 𝐵) ↔ (𝑅𝐹) = (0.‘𝐾)))
1110biimpar 478 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝐹 = ( I ↾ 𝐵))
12 simp3r 1201 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) → (𝑅𝐹) = (𝑅𝐺))
1312eqeq1d 2740 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) → ((𝑅𝐹) = (0.‘𝐾) ↔ (𝑅𝐺) = (0.‘𝐾)))
1413biimpa 477 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝑅𝐺) = (0.‘𝐾))
15 simpl1 1190 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
16 simpl2r 1226 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝐺𝑇)
174, 5, 6, 7, 8trlid0b 38192 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝐺 = ( I ↾ 𝐵) ↔ (𝑅𝐺) = (0.‘𝐾)))
1815, 16, 17syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝐺 = ( I ↾ 𝐵) ↔ (𝑅𝐺) = (0.‘𝐾)))
1914, 18mpbird 256 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝐺 = ( I ↾ 𝐵))
2011, 19eqtr4d 2781 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝐹 = 𝐺)
2120ex 413 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) → ((𝑅𝐹) = (0.‘𝐾) → 𝐹 = 𝐺))
2210, 21sylbid 239 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) → (𝐹 = ( I ↾ 𝐵) → 𝐹 = 𝐺))
2322necon3d 2964 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) → (𝐹𝐺𝐹 ≠ ( I ↾ 𝐵)))
241, 23mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺 ∧ (𝑅𝐹) = (𝑅𝐺))) → 𝐹 ≠ ( I ↾ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943   I cid 5488  cres 5591  cfv 6433  Basecbs 16912  0.cp0 18141  HLchlt 37364  LHypclh 37998  LTrncltrn 38115  trLctrl 38172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-lhyp 38002  df-laut 38003  df-ldil 38118  df-ltrn 38119  df-trl 38173
This theorem is referenced by:  cdlemk43N  38977  cdlemk35u  38978  cdlemk55u1  38979  cdlemk39u1  38981  cdlemk19u1  38983
  Copyright terms: Public domain W3C validator