Proof of Theorem trlnid
| Step | Hyp | Ref
 | Expression | 
| 1 |   | simp3l 1201 | 
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ 𝐺 ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) → 𝐹 ≠ 𝐺) | 
| 2 |   | simp1 1136 | 
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ 𝐺 ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 3 |   | simp2l 1199 | 
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ 𝐺 ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) → 𝐹 ∈ 𝑇) | 
| 4 |   | trlnid.b | 
. . . . . 6
⊢ 𝐵 = (Base‘𝐾) | 
| 5 |   | eqid 2734 | 
. . . . . 6
⊢
(0.‘𝐾) =
(0.‘𝐾) | 
| 6 |   | trlnid.h | 
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) | 
| 7 |   | trlnid.t | 
. . . . . 6
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | 
| 8 |   | trlnid.r | 
. . . . . 6
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | 
| 9 | 4, 5, 6, 7, 8 | trlid0b 40114 | 
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝐹 = ( I ↾ 𝐵) ↔ (𝑅‘𝐹) = (0.‘𝐾))) | 
| 10 | 2, 3, 9 | syl2anc 584 | 
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ 𝐺 ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) → (𝐹 = ( I ↾ 𝐵) ↔ (𝑅‘𝐹) = (0.‘𝐾))) | 
| 11 | 10 | biimpar 477 | 
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ 𝐺 ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) ∧ (𝑅‘𝐹) = (0.‘𝐾)) → 𝐹 = ( I ↾ 𝐵)) | 
| 12 |   | simp3r 1202 | 
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ 𝐺 ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) → (𝑅‘𝐹) = (𝑅‘𝐺)) | 
| 13 | 12 | eqeq1d 2736 | 
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ 𝐺 ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) → ((𝑅‘𝐹) = (0.‘𝐾) ↔ (𝑅‘𝐺) = (0.‘𝐾))) | 
| 14 | 13 | biimpa 476 | 
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ 𝐺 ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) ∧ (𝑅‘𝐹) = (0.‘𝐾)) → (𝑅‘𝐺) = (0.‘𝐾)) | 
| 15 |   | simpl1 1191 | 
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ 𝐺 ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) ∧ (𝑅‘𝐹) = (0.‘𝐾)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 16 |   | simpl2r 1227 | 
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ 𝐺 ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) ∧ (𝑅‘𝐹) = (0.‘𝐾)) → 𝐺 ∈ 𝑇) | 
| 17 | 4, 5, 6, 7, 8 | trlid0b 40114 | 
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) → (𝐺 = ( I ↾ 𝐵) ↔ (𝑅‘𝐺) = (0.‘𝐾))) | 
| 18 | 15, 16, 17 | syl2anc 584 | 
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ 𝐺 ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) ∧ (𝑅‘𝐹) = (0.‘𝐾)) → (𝐺 = ( I ↾ 𝐵) ↔ (𝑅‘𝐺) = (0.‘𝐾))) | 
| 19 | 14, 18 | mpbird 257 | 
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ 𝐺 ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) ∧ (𝑅‘𝐹) = (0.‘𝐾)) → 𝐺 = ( I ↾ 𝐵)) | 
| 20 | 11, 19 | eqtr4d 2772 | 
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ 𝐺 ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) ∧ (𝑅‘𝐹) = (0.‘𝐾)) → 𝐹 = 𝐺) | 
| 21 | 20 | ex 412 | 
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ 𝐺 ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) → ((𝑅‘𝐹) = (0.‘𝐾) → 𝐹 = 𝐺)) | 
| 22 | 10, 21 | sylbid 240 | 
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ 𝐺 ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) → (𝐹 = ( I ↾ 𝐵) → 𝐹 = 𝐺)) | 
| 23 | 22 | necon3d 2952 | 
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ 𝐺 ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) → (𝐹 ≠ 𝐺 → 𝐹 ≠ ( I ↾ 𝐵))) | 
| 24 | 1, 23 | mpd 15 | 
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ 𝐺 ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) → 𝐹 ≠ ( I ↾ 𝐵)) |