| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > trlid0b | Structured version Visualization version GIF version | ||
| Description: A lattice translation is the identity iff its trace is zero. (Contributed by NM, 14-Jun-2013.) |
| Ref | Expression |
|---|---|
| trlid0b.b | ⊢ 𝐵 = (Base‘𝐾) |
| trlid0b.z | ⊢ 0 = (0.‘𝐾) |
| trlid0b.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| trlid0b.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| trlid0b.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| trlid0b | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝐹 = ( I ↾ 𝐵) ↔ (𝑅‘𝐹) = 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trlid0b.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2733 | . . . 4 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 3 | trlid0b.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | trlid0b.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 5 | trlid0b.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 6 | 1, 2, 3, 4, 5 | trlnidatb 40349 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝐹 ≠ ( I ↾ 𝐵) ↔ (𝑅‘𝐹) ∈ (Atoms‘𝐾))) |
| 7 | trlid0b.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
| 8 | 7, 2, 3, 4, 5 | trlatn0 40344 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ((𝑅‘𝐹) ∈ (Atoms‘𝐾) ↔ (𝑅‘𝐹) ≠ 0 )) |
| 9 | 6, 8 | bitrd 279 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝐹 ≠ ( I ↾ 𝐵) ↔ (𝑅‘𝐹) ≠ 0 )) |
| 10 | 9 | necon4bid 2974 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝐹 = ( I ↾ 𝐵) ↔ (𝑅‘𝐹) = 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 I cid 5515 ↾ cres 5623 ‘cfv 6489 Basecbs 17127 0.cp0 18335 Atomscatm 39435 HLchlt 39522 LHypclh 40156 LTrncltrn 40273 trLctrl 40330 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-map 8761 df-proset 18208 df-poset 18227 df-plt 18242 df-lub 18258 df-glb 18259 df-join 18260 df-meet 18261 df-p0 18337 df-p1 18338 df-lat 18346 df-clat 18413 df-oposet 39348 df-ol 39350 df-oml 39351 df-covers 39438 df-ats 39439 df-atl 39470 df-cvlat 39494 df-hlat 39523 df-lhyp 40160 df-laut 40161 df-ldil 40276 df-ltrn 40277 df-trl 40331 |
| This theorem is referenced by: trlnid 40351 trlcoat 40895 trlcone 40900 trljco 40912 tendoid 40945 tendoex 41147 dia0 41224 |
| Copyright terms: Public domain | W3C validator |