Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlid0b Structured version   Visualization version   GIF version

Theorem trlid0b 36316
Description: A lattice translation is the identity iff its trace is zero. (Contributed by NM, 14-Jun-2013.)
Hypotheses
Ref Expression
trlid0b.b 𝐵 = (Base‘𝐾)
trlid0b.z 0 = (0.‘𝐾)
trlid0b.h 𝐻 = (LHyp‘𝐾)
trlid0b.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlid0b.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlid0b (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐹 = ( I ↾ 𝐵) ↔ (𝑅𝐹) = 0 ))

Proof of Theorem trlid0b
StepHypRef Expression
1 trlid0b.b . . . 4 𝐵 = (Base‘𝐾)
2 eqid 2777 . . . 4 (Atoms‘𝐾) = (Atoms‘𝐾)
3 trlid0b.h . . . 4 𝐻 = (LHyp‘𝐾)
4 trlid0b.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 trlid0b.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
61, 2, 3, 4, 5trlnidatb 36315 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐹 ≠ ( I ↾ 𝐵) ↔ (𝑅𝐹) ∈ (Atoms‘𝐾)))
7 trlid0b.z . . . 4 0 = (0.‘𝐾)
87, 2, 3, 4, 5trlatn0 36310 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑅𝐹) ∈ (Atoms‘𝐾) ↔ (𝑅𝐹) ≠ 0 ))
96, 8bitrd 271 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐹 ≠ ( I ↾ 𝐵) ↔ (𝑅𝐹) ≠ 0 ))
109necon4bid 3013 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐹 = ( I ↾ 𝐵) ↔ (𝑅𝐹) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wcel 2106  wne 2968   I cid 5260  cres 5357  cfv 6135  Basecbs 16255  0.cp0 17423  Atomscatm 35401  HLchlt 35488  LHypclh 36122  LTrncltrn 36239  trLctrl 36296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-map 8142  df-proset 17314  df-poset 17332  df-plt 17344  df-lub 17360  df-glb 17361  df-join 17362  df-meet 17363  df-p0 17425  df-p1 17426  df-lat 17432  df-clat 17494  df-oposet 35314  df-ol 35316  df-oml 35317  df-covers 35404  df-ats 35405  df-atl 35436  df-cvlat 35460  df-hlat 35489  df-lhyp 36126  df-laut 36127  df-ldil 36242  df-ltrn 36243  df-trl 36297
This theorem is referenced by:  trlnid  36317  trlcoat  36861  trlcone  36866  trljco  36878  tendoid  36911  tendoex  37113  dia0  37190
  Copyright terms: Public domain W3C validator