Step | Hyp | Ref
| Expression |
1 | | nn0suc 7716 |
. . 3
⊢ (𝑖 ∈ ω → (𝑖 = ∅ ∨ ∃𝑗 ∈ ω 𝑖 = suc 𝑗)) |
2 | | fr0g 8237 |
. . . . . 6
⊢
(Pred(𝑅, 𝐴, 𝑋) ∈ 𝐵 → ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅) =
Pred(𝑅, 𝐴, 𝑋)) |
3 | | predss 6199 |
. . . . . 6
⊢
Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐴 |
4 | 2, 3 | eqsstrdi 3971 |
. . . . 5
⊢
(Pred(𝑅, 𝐴, 𝑋) ∈ 𝐵 → ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅) ⊆
𝐴) |
5 | | fveq2 6756 |
. . . . . 6
⊢ (𝑖 = ∅ → ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) = ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾
ω)‘∅)) |
6 | 5 | sseq1d 3948 |
. . . . 5
⊢ (𝑖 = ∅ → (((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐴 ↔ ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅) ⊆
𝐴)) |
7 | 4, 6 | syl5ibr 245 |
. . . 4
⊢ (𝑖 = ∅ → (Pred(𝑅, 𝐴, 𝑋) ∈ 𝐵 → ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐴)) |
8 | | nfcv 2906 |
. . . . . . . . . . 11
⊢
Ⅎ𝑎Pred(𝑅, 𝐴, 𝑋) |
9 | | nfcv 2906 |
. . . . . . . . . . 11
⊢
Ⅎ𝑎𝑗 |
10 | | nfmpt1 5178 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑎(𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)) |
11 | 10, 8 | nfrdg 8216 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑎rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) |
12 | | nfcv 2906 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑎ω |
13 | 11, 12 | nfres 5882 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑎(rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) |
14 | 13, 9 | nffv 6766 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑎((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) |
15 | | nfcv 2906 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑎Pred(𝑅, 𝐴, 𝑒) |
16 | 14, 15 | nfiun 4951 |
. . . . . . . . . . 11
⊢
Ⅎ𝑎∪ 𝑒 ∈ ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑒) |
17 | | predeq3 6195 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑒 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑒)) |
18 | 17 | cbviunv 4966 |
. . . . . . . . . . . . 13
⊢ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦) = ∪ 𝑒 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑒) |
19 | 18 | mpteq2i 5175 |
. . . . . . . . . . . 12
⊢ (𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)) = (𝑎 ∈ V ↦ ∪ 𝑒 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑒)) |
20 | | rdgeq1 8213 |
. . . . . . . . . . . 12
⊢ ((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)) = (𝑎 ∈ V ↦ ∪ 𝑒 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑒)) → rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) = rec((𝑎 ∈ V ↦ ∪ 𝑒 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑒)), Pred(𝑅, 𝐴, 𝑋))) |
21 | | reseq1 5874 |
. . . . . . . . . . . 12
⊢
(rec((𝑎 ∈ V
↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) = rec((𝑎 ∈ V ↦ ∪ 𝑒 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑒)), Pred(𝑅, 𝐴, 𝑋)) → (rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) = (rec((𝑎 ∈ V ↦ ∪ 𝑒 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑒)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)) |
22 | 19, 20, 21 | mp2b 10 |
. . . . . . . . . . 11
⊢
(rec((𝑎 ∈ V
↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) = (rec((𝑎 ∈ V ↦ ∪ 𝑒 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑒)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) |
23 | | iuneq1 4937 |
. . . . . . . . . . 11
⊢ (𝑎 = ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) → ∪
𝑒 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑒) = ∪ 𝑒 ∈ ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑒)) |
24 | 8, 9, 16, 22, 23 | frsucmpt 8239 |
. . . . . . . . . 10
⊢ ((𝑗 ∈ ω ∧ ∪ 𝑒 ∈ ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑒) ∈ V) → ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗) = ∪ 𝑒 ∈ ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑒)) |
25 | | iunss 4971 |
. . . . . . . . . . 11
⊢ (∪ 𝑒 ∈ ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑒) ⊆ 𝐴 ↔ ∀𝑒 ∈ ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑒) ⊆ 𝐴) |
26 | | predss 6199 |
. . . . . . . . . . . 12
⊢
Pred(𝑅, 𝐴, 𝑒) ⊆ 𝐴 |
27 | 26 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑒 ∈ ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) → Pred(𝑅, 𝐴, 𝑒) ⊆ 𝐴) |
28 | 25, 27 | mprgbir 3078 |
. . . . . . . . . 10
⊢ ∪ 𝑒 ∈ ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑒) ⊆ 𝐴 |
29 | 24, 28 | eqsstrdi 3971 |
. . . . . . . . 9
⊢ ((𝑗 ∈ ω ∧ ∪ 𝑒 ∈ ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑒) ∈ V) → ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗) ⊆ 𝐴) |
30 | 8, 9, 16, 22, 23 | frsucmptn 8240 |
. . . . . . . . . . 11
⊢ (¬
∪ 𝑒 ∈ ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑒) ∈ V → ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗) = ∅) |
31 | 30 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑗 ∈ ω ∧ ¬
∪ 𝑒 ∈ ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑒) ∈ V) → ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗) = ∅) |
32 | | 0ss 4327 |
. . . . . . . . . 10
⊢ ∅
⊆ 𝐴 |
33 | 31, 32 | eqsstrdi 3971 |
. . . . . . . . 9
⊢ ((𝑗 ∈ ω ∧ ¬
∪ 𝑒 ∈ ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)Pred(𝑅, 𝐴, 𝑒) ∈ V) → ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗) ⊆ 𝐴) |
34 | 29, 33 | pm2.61dan 809 |
. . . . . . . 8
⊢ (𝑗 ∈ ω →
((rec((𝑎 ∈ V ↦
∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗) ⊆ 𝐴) |
35 | 34 | adantr 480 |
. . . . . . 7
⊢ ((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) → ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗) ⊆ 𝐴) |
36 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑖 = suc 𝑗 → ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) = ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗)) |
37 | 36 | sseq1d 3948 |
. . . . . . . 8
⊢ (𝑖 = suc 𝑗 → (((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐴 ↔ ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗) ⊆ 𝐴)) |
38 | 37 | adantl 481 |
. . . . . . 7
⊢ ((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) → (((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐴 ↔ ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑗) ⊆ 𝐴)) |
39 | 35, 38 | mpbird 256 |
. . . . . 6
⊢ ((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) → ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐴) |
40 | 39 | rexlimiva 3209 |
. . . . 5
⊢
(∃𝑗 ∈
ω 𝑖 = suc 𝑗 → ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐴) |
41 | 40 | a1d 25 |
. . . 4
⊢
(∃𝑗 ∈
ω 𝑖 = suc 𝑗 → (Pred(𝑅, 𝐴, 𝑋) ∈ 𝐵 → ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐴)) |
42 | 7, 41 | jaoi 853 |
. . 3
⊢ ((𝑖 = ∅ ∨ ∃𝑗 ∈ ω 𝑖 = suc 𝑗) → (Pred(𝑅, 𝐴, 𝑋) ∈ 𝐵 → ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐴)) |
43 | 1, 42 | syl 17 |
. 2
⊢ (𝑖 ∈ ω →
(Pred(𝑅, 𝐴, 𝑋) ∈ 𝐵 → ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐴)) |
44 | | nfvres 6792 |
. . . 4
⊢ (¬
𝑖 ∈ ω →
((rec((𝑎 ∈ V ↦
∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) = ∅) |
45 | 44, 32 | eqsstrdi 3971 |
. . 3
⊢ (¬
𝑖 ∈ ω →
((rec((𝑎 ∈ V ↦
∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐴) |
46 | 45 | a1d 25 |
. 2
⊢ (¬
𝑖 ∈ ω →
(Pred(𝑅, 𝐴, 𝑋) ∈ 𝐵 → ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐴)) |
47 | 43, 46 | pm2.61i 182 |
1
⊢
(Pred(𝑅, 𝐴, 𝑋) ∈ 𝐵 → ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐴) |