MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1elss Structured version   Visualization version   GIF version

Theorem r1elss 9800
Description: The range of the 𝑅1 function is transitive. Lemma 2.10 of [Kunen] p. 97. (Contributed by Mario Carneiro, 22-Mar-2013.) (Revised by Mario Carneiro, 16-Nov-2014.)
Hypothesis
Ref Expression
r1elss.1 𝐴 ∈ V
Assertion
Ref Expression
r1elss (𝐴 (𝑅1 “ On) ↔ 𝐴 (𝑅1 “ On))

Proof of Theorem r1elss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1elssi 9799 . 2 (𝐴 (𝑅1 “ On) → 𝐴 (𝑅1 “ On))
2 r1elss.1 . . . 4 𝐴 ∈ V
32tz9.12 9784 . . 3 (∀𝑦𝐴𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥) → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1𝑥))
4 dfss3 3965 . . . 4 (𝐴 (𝑅1 “ On) ↔ ∀𝑦𝐴 𝑦 (𝑅1 “ On))
5 r1fnon 9761 . . . . . . . 8 𝑅1 Fn On
6 fnfun 6642 . . . . . . . 8 (𝑅1 Fn On → Fun 𝑅1)
7 funiunfv 7242 . . . . . . . 8 (Fun 𝑅1 𝑥 ∈ On (𝑅1𝑥) = (𝑅1 “ On))
85, 6, 7mp2b 10 . . . . . . 7 𝑥 ∈ On (𝑅1𝑥) = (𝑅1 “ On)
98eleq2i 2819 . . . . . 6 (𝑦 𝑥 ∈ On (𝑅1𝑥) ↔ 𝑦 (𝑅1 “ On))
10 eliun 4994 . . . . . 6 (𝑦 𝑥 ∈ On (𝑅1𝑥) ↔ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥))
119, 10bitr3i 277 . . . . 5 (𝑦 (𝑅1 “ On) ↔ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥))
1211ralbii 3087 . . . 4 (∀𝑦𝐴 𝑦 (𝑅1 “ On) ↔ ∀𝑦𝐴𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥))
134, 12bitri 275 . . 3 (𝐴 (𝑅1 “ On) ↔ ∀𝑦𝐴𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥))
148eleq2i 2819 . . . 4 (𝐴 𝑥 ∈ On (𝑅1𝑥) ↔ 𝐴 (𝑅1 “ On))
15 eliun 4994 . . . 4 (𝐴 𝑥 ∈ On (𝑅1𝑥) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1𝑥))
1614, 15bitr3i 277 . . 3 (𝐴 (𝑅1 “ On) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1𝑥))
173, 13, 163imtr4i 292 . 2 (𝐴 (𝑅1 “ On) → 𝐴 (𝑅1 “ On))
181, 17impbii 208 1 (𝐴 (𝑅1 “ On) ↔ 𝐴 (𝑅1 “ On))
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1533  wcel 2098  wral 3055  wrex 3064  Vcvv 3468  wss 3943   cuni 4902   ciun 4990  cima 5672  Oncon0 6357  Fun wfun 6530   Fn wfn 6531  cfv 6536  𝑅1cr1 9756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7407  df-om 7852  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-r1 9758
This theorem is referenced by:  unir1  9807  tcwf  9877  tcrank  9878  rankcf  10771  wfgru  10810
  Copyright terms: Public domain W3C validator