MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1elss Structured version   Visualization version   GIF version

Theorem r1elss 9818
Description: The range of the 𝑅1 function is transitive. Lemma 2.10 of [Kunen] p. 97. (Contributed by Mario Carneiro, 22-Mar-2013.) (Revised by Mario Carneiro, 16-Nov-2014.)
Hypothesis
Ref Expression
r1elss.1 𝐴 ∈ V
Assertion
Ref Expression
r1elss (𝐴 (𝑅1 “ On) ↔ 𝐴 (𝑅1 “ On))

Proof of Theorem r1elss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1elssi 9817 . 2 (𝐴 (𝑅1 “ On) → 𝐴 (𝑅1 “ On))
2 r1elss.1 . . . 4 𝐴 ∈ V
32tz9.12 9802 . . 3 (∀𝑦𝐴𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥) → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1𝑥))
4 dfss3 3947 . . . 4 (𝐴 (𝑅1 “ On) ↔ ∀𝑦𝐴 𝑦 (𝑅1 “ On))
5 r1fnon 9779 . . . . . . . 8 𝑅1 Fn On
6 fnfun 6637 . . . . . . . 8 (𝑅1 Fn On → Fun 𝑅1)
7 funiunfv 7239 . . . . . . . 8 (Fun 𝑅1 𝑥 ∈ On (𝑅1𝑥) = (𝑅1 “ On))
85, 6, 7mp2b 10 . . . . . . 7 𝑥 ∈ On (𝑅1𝑥) = (𝑅1 “ On)
98eleq2i 2826 . . . . . 6 (𝑦 𝑥 ∈ On (𝑅1𝑥) ↔ 𝑦 (𝑅1 “ On))
10 eliun 4971 . . . . . 6 (𝑦 𝑥 ∈ On (𝑅1𝑥) ↔ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥))
119, 10bitr3i 277 . . . . 5 (𝑦 (𝑅1 “ On) ↔ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥))
1211ralbii 3082 . . . 4 (∀𝑦𝐴 𝑦 (𝑅1 “ On) ↔ ∀𝑦𝐴𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥))
134, 12bitri 275 . . 3 (𝐴 (𝑅1 “ On) ↔ ∀𝑦𝐴𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥))
148eleq2i 2826 . . . 4 (𝐴 𝑥 ∈ On (𝑅1𝑥) ↔ 𝐴 (𝑅1 “ On))
15 eliun 4971 . . . 4 (𝐴 𝑥 ∈ On (𝑅1𝑥) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1𝑥))
1614, 15bitr3i 277 . . 3 (𝐴 (𝑅1 “ On) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1𝑥))
173, 13, 163imtr4i 292 . 2 (𝐴 (𝑅1 “ On) → 𝐴 (𝑅1 “ On))
181, 17impbii 209 1 (𝐴 (𝑅1 “ On) ↔ 𝐴 (𝑅1 “ On))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2108  wral 3051  wrex 3060  Vcvv 3459  wss 3926   cuni 4883   ciun 4967  cima 5657  Oncon0 6352  Fun wfun 6524   Fn wfn 6525  cfv 6530  𝑅1cr1 9774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-om 7860  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-r1 9776
This theorem is referenced by:  unir1  9825  tcwf  9895  tcrank  9896  rankcf  10789  wfgru  10828  trfr  44935  tcfr  44936  wfaxrep  44967
  Copyright terms: Public domain W3C validator