Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r1elss | Structured version Visualization version GIF version |
Description: The range of the 𝑅1 function is transitive. Lemma 2.10 of [Kunen] p. 97. (Contributed by Mario Carneiro, 22-Mar-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
r1elss.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
r1elss | ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ 𝐴 ⊆ ∪ (𝑅1 “ On)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r1elssi 9267 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ⊆ ∪ (𝑅1 “ On)) | |
2 | r1elss.1 | . . . 4 ⊢ 𝐴 ∈ V | |
3 | 2 | tz9.12 9252 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥) → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘𝑥)) |
4 | dfss3 3880 | . . . 4 ⊢ (𝐴 ⊆ ∪ (𝑅1 “ On) ↔ ∀𝑦 ∈ 𝐴 𝑦 ∈ ∪ (𝑅1 “ On)) | |
5 | r1fnon 9229 | . . . . . . . 8 ⊢ 𝑅1 Fn On | |
6 | fnfun 6434 | . . . . . . . 8 ⊢ (𝑅1 Fn On → Fun 𝑅1) | |
7 | funiunfv 6999 | . . . . . . . 8 ⊢ (Fun 𝑅1 → ∪ 𝑥 ∈ On (𝑅1‘𝑥) = ∪ (𝑅1 “ On)) | |
8 | 5, 6, 7 | mp2b 10 | . . . . . . 7 ⊢ ∪ 𝑥 ∈ On (𝑅1‘𝑥) = ∪ (𝑅1 “ On) |
9 | 8 | eleq2i 2843 | . . . . . 6 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ On (𝑅1‘𝑥) ↔ 𝑦 ∈ ∪ (𝑅1 “ On)) |
10 | eliun 4887 | . . . . . 6 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ On (𝑅1‘𝑥) ↔ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)) | |
11 | 9, 10 | bitr3i 280 | . . . . 5 ⊢ (𝑦 ∈ ∪ (𝑅1 “ On) ↔ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)) |
12 | 11 | ralbii 3097 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 𝑦 ∈ ∪ (𝑅1 “ On) ↔ ∀𝑦 ∈ 𝐴 ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)) |
13 | 4, 12 | bitri 278 | . . 3 ⊢ (𝐴 ⊆ ∪ (𝑅1 “ On) ↔ ∀𝑦 ∈ 𝐴 ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)) |
14 | 8 | eleq2i 2843 | . . . 4 ⊢ (𝐴 ∈ ∪ 𝑥 ∈ On (𝑅1‘𝑥) ↔ 𝐴 ∈ ∪ (𝑅1 “ On)) |
15 | eliun 4887 | . . . 4 ⊢ (𝐴 ∈ ∪ 𝑥 ∈ On (𝑅1‘𝑥) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘𝑥)) | |
16 | 14, 15 | bitr3i 280 | . . 3 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘𝑥)) |
17 | 3, 13, 16 | 3imtr4i 295 | . 2 ⊢ (𝐴 ⊆ ∪ (𝑅1 “ On) → 𝐴 ∈ ∪ (𝑅1 “ On)) |
18 | 1, 17 | impbii 212 | 1 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ 𝐴 ⊆ ∪ (𝑅1 “ On)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 = wceq 1538 ∈ wcel 2111 ∀wral 3070 ∃wrex 3071 Vcvv 3409 ⊆ wss 3858 ∪ cuni 4798 ∪ ciun 4883 “ cima 5527 Oncon0 6169 Fun wfun 6329 Fn wfn 6330 ‘cfv 6335 𝑅1cr1 9224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-om 7580 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-r1 9226 |
This theorem is referenced by: unir1 9275 tcwf 9345 tcrank 9346 rankcf 10237 wfgru 10276 |
Copyright terms: Public domain | W3C validator |