![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r1elss | Structured version Visualization version GIF version |
Description: The range of the 𝑅1 function is transitive. Lemma 2.10 of [Kunen] p. 97. (Contributed by Mario Carneiro, 22-Mar-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
r1elss.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
r1elss | ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ 𝐴 ⊆ ∪ (𝑅1 “ On)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r1elssi 9080 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ⊆ ∪ (𝑅1 “ On)) | |
2 | r1elss.1 | . . . 4 ⊢ 𝐴 ∈ V | |
3 | 2 | tz9.12 9065 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥) → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘𝑥)) |
4 | dfss3 3878 | . . . 4 ⊢ (𝐴 ⊆ ∪ (𝑅1 “ On) ↔ ∀𝑦 ∈ 𝐴 𝑦 ∈ ∪ (𝑅1 “ On)) | |
5 | r1fnon 9042 | . . . . . . . 8 ⊢ 𝑅1 Fn On | |
6 | fnfun 6323 | . . . . . . . 8 ⊢ (𝑅1 Fn On → Fun 𝑅1) | |
7 | funiunfv 6872 | . . . . . . . 8 ⊢ (Fun 𝑅1 → ∪ 𝑥 ∈ On (𝑅1‘𝑥) = ∪ (𝑅1 “ On)) | |
8 | 5, 6, 7 | mp2b 10 | . . . . . . 7 ⊢ ∪ 𝑥 ∈ On (𝑅1‘𝑥) = ∪ (𝑅1 “ On) |
9 | 8 | eleq2i 2874 | . . . . . 6 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ On (𝑅1‘𝑥) ↔ 𝑦 ∈ ∪ (𝑅1 “ On)) |
10 | eliun 4829 | . . . . . 6 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ On (𝑅1‘𝑥) ↔ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)) | |
11 | 9, 10 | bitr3i 278 | . . . . 5 ⊢ (𝑦 ∈ ∪ (𝑅1 “ On) ↔ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)) |
12 | 11 | ralbii 3132 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 𝑦 ∈ ∪ (𝑅1 “ On) ↔ ∀𝑦 ∈ 𝐴 ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)) |
13 | 4, 12 | bitri 276 | . . 3 ⊢ (𝐴 ⊆ ∪ (𝑅1 “ On) ↔ ∀𝑦 ∈ 𝐴 ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)) |
14 | 8 | eleq2i 2874 | . . . 4 ⊢ (𝐴 ∈ ∪ 𝑥 ∈ On (𝑅1‘𝑥) ↔ 𝐴 ∈ ∪ (𝑅1 “ On)) |
15 | eliun 4829 | . . . 4 ⊢ (𝐴 ∈ ∪ 𝑥 ∈ On (𝑅1‘𝑥) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘𝑥)) | |
16 | 14, 15 | bitr3i 278 | . . 3 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘𝑥)) |
17 | 3, 13, 16 | 3imtr4i 293 | . 2 ⊢ (𝐴 ⊆ ∪ (𝑅1 “ On) → 𝐴 ∈ ∪ (𝑅1 “ On)) |
18 | 1, 17 | impbii 210 | 1 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ 𝐴 ⊆ ∪ (𝑅1 “ On)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 207 = wceq 1522 ∈ wcel 2081 ∀wral 3105 ∃wrex 3106 Vcvv 3437 ⊆ wss 3859 ∪ cuni 4745 ∪ ciun 4825 “ cima 5446 Oncon0 6066 Fun wfun 6219 Fn wfn 6220 ‘cfv 6225 𝑅1cr1 9037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-int 4783 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-om 7437 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-r1 9039 |
This theorem is referenced by: unir1 9088 tcwf 9158 tcrank 9159 rankcf 10045 wfgru 10084 |
Copyright terms: Public domain | W3C validator |