| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r1elss | Structured version Visualization version GIF version | ||
| Description: The range of the 𝑅1 function is transitive. Lemma 2.10 of [Kunen] p. 97. (Contributed by Mario Carneiro, 22-Mar-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| r1elss.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| r1elss | ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ 𝐴 ⊆ ∪ (𝑅1 “ On)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1elssi 9758 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ⊆ ∪ (𝑅1 “ On)) | |
| 2 | r1elss.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 3 | 2 | tz9.12 9743 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥) → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘𝑥)) |
| 4 | dfss3 3935 | . . . 4 ⊢ (𝐴 ⊆ ∪ (𝑅1 “ On) ↔ ∀𝑦 ∈ 𝐴 𝑦 ∈ ∪ (𝑅1 “ On)) | |
| 5 | r1fnon 9720 | . . . . . . . 8 ⊢ 𝑅1 Fn On | |
| 6 | fnfun 6618 | . . . . . . . 8 ⊢ (𝑅1 Fn On → Fun 𝑅1) | |
| 7 | funiunfv 7222 | . . . . . . . 8 ⊢ (Fun 𝑅1 → ∪ 𝑥 ∈ On (𝑅1‘𝑥) = ∪ (𝑅1 “ On)) | |
| 8 | 5, 6, 7 | mp2b 10 | . . . . . . 7 ⊢ ∪ 𝑥 ∈ On (𝑅1‘𝑥) = ∪ (𝑅1 “ On) |
| 9 | 8 | eleq2i 2820 | . . . . . 6 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ On (𝑅1‘𝑥) ↔ 𝑦 ∈ ∪ (𝑅1 “ On)) |
| 10 | eliun 4959 | . . . . . 6 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ On (𝑅1‘𝑥) ↔ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)) | |
| 11 | 9, 10 | bitr3i 277 | . . . . 5 ⊢ (𝑦 ∈ ∪ (𝑅1 “ On) ↔ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)) |
| 12 | 11 | ralbii 3075 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 𝑦 ∈ ∪ (𝑅1 “ On) ↔ ∀𝑦 ∈ 𝐴 ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)) |
| 13 | 4, 12 | bitri 275 | . . 3 ⊢ (𝐴 ⊆ ∪ (𝑅1 “ On) ↔ ∀𝑦 ∈ 𝐴 ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)) |
| 14 | 8 | eleq2i 2820 | . . . 4 ⊢ (𝐴 ∈ ∪ 𝑥 ∈ On (𝑅1‘𝑥) ↔ 𝐴 ∈ ∪ (𝑅1 “ On)) |
| 15 | eliun 4959 | . . . 4 ⊢ (𝐴 ∈ ∪ 𝑥 ∈ On (𝑅1‘𝑥) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘𝑥)) | |
| 16 | 14, 15 | bitr3i 277 | . . 3 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘𝑥)) |
| 17 | 3, 13, 16 | 3imtr4i 292 | . 2 ⊢ (𝐴 ⊆ ∪ (𝑅1 “ On) → 𝐴 ∈ ∪ (𝑅1 “ On)) |
| 18 | 1, 17 | impbii 209 | 1 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ 𝐴 ⊆ ∪ (𝑅1 “ On)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 Vcvv 3447 ⊆ wss 3914 ∪ cuni 4871 ∪ ciun 4955 “ cima 5641 Oncon0 6332 Fun wfun 6505 Fn wfn 6506 ‘cfv 6511 𝑅1cr1 9715 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-r1 9717 |
| This theorem is referenced by: unir1 9766 tcwf 9836 tcrank 9837 rankcf 10730 wfgru 10769 trfr 44952 tcfr 44953 wfaxrep 44984 |
| Copyright terms: Public domain | W3C validator |