MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1elss Structured version   Visualization version   GIF version

Theorem r1elss 9766
Description: The range of the 𝑅1 function is transitive. Lemma 2.10 of [Kunen] p. 97. (Contributed by Mario Carneiro, 22-Mar-2013.) (Revised by Mario Carneiro, 16-Nov-2014.)
Hypothesis
Ref Expression
r1elss.1 𝐴 ∈ V
Assertion
Ref Expression
r1elss (𝐴 (𝑅1 “ On) ↔ 𝐴 (𝑅1 “ On))

Proof of Theorem r1elss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1elssi 9765 . 2 (𝐴 (𝑅1 “ On) → 𝐴 (𝑅1 “ On))
2 r1elss.1 . . . 4 𝐴 ∈ V
32tz9.12 9750 . . 3 (∀𝑦𝐴𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥) → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1𝑥))
4 dfss3 3938 . . . 4 (𝐴 (𝑅1 “ On) ↔ ∀𝑦𝐴 𝑦 (𝑅1 “ On))
5 r1fnon 9727 . . . . . . . 8 𝑅1 Fn On
6 fnfun 6621 . . . . . . . 8 (𝑅1 Fn On → Fun 𝑅1)
7 funiunfv 7225 . . . . . . . 8 (Fun 𝑅1 𝑥 ∈ On (𝑅1𝑥) = (𝑅1 “ On))
85, 6, 7mp2b 10 . . . . . . 7 𝑥 ∈ On (𝑅1𝑥) = (𝑅1 “ On)
98eleq2i 2821 . . . . . 6 (𝑦 𝑥 ∈ On (𝑅1𝑥) ↔ 𝑦 (𝑅1 “ On))
10 eliun 4962 . . . . . 6 (𝑦 𝑥 ∈ On (𝑅1𝑥) ↔ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥))
119, 10bitr3i 277 . . . . 5 (𝑦 (𝑅1 “ On) ↔ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥))
1211ralbii 3076 . . . 4 (∀𝑦𝐴 𝑦 (𝑅1 “ On) ↔ ∀𝑦𝐴𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥))
134, 12bitri 275 . . 3 (𝐴 (𝑅1 “ On) ↔ ∀𝑦𝐴𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥))
148eleq2i 2821 . . . 4 (𝐴 𝑥 ∈ On (𝑅1𝑥) ↔ 𝐴 (𝑅1 “ On))
15 eliun 4962 . . . 4 (𝐴 𝑥 ∈ On (𝑅1𝑥) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1𝑥))
1614, 15bitr3i 277 . . 3 (𝐴 (𝑅1 “ On) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1𝑥))
173, 13, 163imtr4i 292 . 2 (𝐴 (𝑅1 “ On) → 𝐴 (𝑅1 “ On))
181, 17impbii 209 1 (𝐴 (𝑅1 “ On) ↔ 𝐴 (𝑅1 “ On))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  wral 3045  wrex 3054  Vcvv 3450  wss 3917   cuni 4874   ciun 4958  cima 5644  Oncon0 6335  Fun wfun 6508   Fn wfn 6509  cfv 6514  𝑅1cr1 9722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-r1 9724
This theorem is referenced by:  unir1  9773  tcwf  9843  tcrank  9844  rankcf  10737  wfgru  10776  trfr  44959  tcfr  44960  wfaxrep  44991
  Copyright terms: Public domain W3C validator