MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr2wspthon Structured version   Visualization version   GIF version

Theorem usgr2wspthon 28330
Description: A simple path of length 2 between two vertices corresponds to two adjacent edges in a simple graph. (Contributed by Alexander van der Vekens, 9-Mar-2018.) (Revised by AV, 17-May-2021.)
Hypotheses
Ref Expression
usgr2wspthon0.v 𝑉 = (Vtx‘𝐺)
usgr2wspthon0.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
usgr2wspthon ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉)) → (𝑇 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ ∃𝑏𝑉 ((𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ 𝐴𝐶) ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))))
Distinct variable groups:   𝐴,𝑏   𝐶,𝑏   𝐺,𝑏   𝑉,𝑏   𝑇,𝑏
Allowed substitution hint:   𝐸(𝑏)

Proof of Theorem usgr2wspthon
StepHypRef Expression
1 usgrupgr 27552 . . . 4 (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph)
21adantr 481 . . 3 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉)) → 𝐺 ∈ UPGraph)
3 simpl 483 . . . 4 ((𝐴𝑉𝐶𝑉) → 𝐴𝑉)
43adantl 482 . . 3 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉)) → 𝐴𝑉)
5 simpr 485 . . . 4 ((𝐴𝑉𝐶𝑉) → 𝐶𝑉)
65adantl 482 . . 3 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉)) → 𝐶𝑉)
7 usgr2wspthon0.v . . . 4 𝑉 = (Vtx‘𝐺)
87elwspths2on 28325 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐴𝑉𝐶𝑉) → (𝑇 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ ∃𝑏𝑉 (𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))))
92, 4, 6, 8syl3anc 1370 . 2 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉)) → (𝑇 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ ∃𝑏𝑉 (𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))))
10 simpl 483 . . . . . . 7 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉)) → 𝐺 ∈ USGraph)
1110adantr 481 . . . . . 6 (((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉)) ∧ 𝑏𝑉) → 𝐺 ∈ USGraph)
12 simplrl 774 . . . . . 6 (((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉)) ∧ 𝑏𝑉) → 𝐴𝑉)
13 simpr 485 . . . . . 6 (((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉)) ∧ 𝑏𝑉) → 𝑏𝑉)
14 simplrr 775 . . . . . 6 (((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉)) ∧ 𝑏𝑉) → 𝐶𝑉)
15 usgr2wspthon0.e . . . . . . 7 𝐸 = (Edg‘𝐺)
167, 15usgr2wspthons3 28329 . . . . . 6 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝑏𝑉𝐶𝑉)) → (⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ (𝐴𝐶 ∧ {𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)))
1711, 12, 13, 14, 16syl13anc 1371 . . . . 5 (((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉)) ∧ 𝑏𝑉) → (⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ (𝐴𝐶 ∧ {𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)))
1817anbi2d 629 . . . 4 (((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉)) ∧ 𝑏𝑉) → ((𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) ↔ (𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ (𝐴𝐶 ∧ {𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))))
19 anass 469 . . . . 5 (((𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ 𝐴𝐶) ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)) ↔ (𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ (𝐴𝐶 ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))))
20 3anass 1094 . . . . . . 7 ((𝐴𝐶 ∧ {𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸) ↔ (𝐴𝐶 ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)))
2120bicomi 223 . . . . . 6 ((𝐴𝐶 ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)) ↔ (𝐴𝐶 ∧ {𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))
2221anbi2i 623 . . . . 5 ((𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ (𝐴𝐶 ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))) ↔ (𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ (𝐴𝐶 ∧ {𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)))
2319, 22bitri 274 . . . 4 (((𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ 𝐴𝐶) ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)) ↔ (𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ (𝐴𝐶 ∧ {𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)))
2418, 23bitr4di 289 . . 3 (((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉)) ∧ 𝑏𝑉) → ((𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) ↔ ((𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ 𝐴𝐶) ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))))
2524rexbidva 3225 . 2 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉)) → (∃𝑏𝑉 (𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) ↔ ∃𝑏𝑉 ((𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ 𝐴𝐶) ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))))
269, 25bitrd 278 1 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉)) → (𝑇 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ ∃𝑏𝑉 ((𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ 𝐴𝐶) ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065  {cpr 4563  cfv 6433  (class class class)co 7275  2c2 12028  ⟨“cs3 14555  Vtxcvtx 27366  Edgcedg 27417  UPGraphcupgr 27450  USGraphcusgr 27519   WSPathsNOn cwwspthsnon 28194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-ac2 10219  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-ac 9872  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-concat 14274  df-s1 14301  df-s2 14561  df-s3 14562  df-edg 27418  df-uhgr 27428  df-upgr 27452  df-umgr 27453  df-uspgr 27520  df-usgr 27521  df-wlks 27966  df-wlkson 27967  df-trls 28060  df-trlson 28061  df-pths 28084  df-spths 28085  df-pthson 28086  df-spthson 28087  df-wwlks 28195  df-wwlksn 28196  df-wwlksnon 28197  df-wspthsnon 28199
This theorem is referenced by:  fusgr2wsp2nb  28698
  Copyright terms: Public domain W3C validator