| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > usgr2wspthon | Structured version Visualization version GIF version | ||
| Description: A simple path of length 2 between two vertices corresponds to two adjacent edges in a simple graph. (Contributed by Alexander van der Vekens, 9-Mar-2018.) (Revised by AV, 17-May-2021.) |
| Ref | Expression |
|---|---|
| usgr2wspthon0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| usgr2wspthon0.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| usgr2wspthon | ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝑇 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ ∃𝑏 ∈ 𝑉 ((𝑇 = 〈“𝐴𝑏𝐶”〉 ∧ 𝐴 ≠ 𝐶) ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrupgr 29119 | . . . 4 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐺 ∈ UPGraph) |
| 3 | simpl 482 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
| 4 | 3 | adantl 481 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐴 ∈ 𝑉) |
| 5 | simpr 484 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → 𝐶 ∈ 𝑉) | |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐶 ∈ 𝑉) |
| 7 | usgr2wspthon0.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 8 | 7 | elwspths2on 29897 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝑇 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ ∃𝑏 ∈ 𝑉 (𝑇 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))) |
| 9 | 2, 4, 6, 8 | syl3anc 1373 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝑇 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ ∃𝑏 ∈ 𝑉 (𝑇 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))) |
| 10 | simpl 482 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐺 ∈ USGraph) | |
| 11 | 10 | adantr 480 | . . . . . 6 ⊢ (((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → 𝐺 ∈ USGraph) |
| 12 | simplrl 776 | . . . . . 6 ⊢ (((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
| 13 | simpr 484 | . . . . . 6 ⊢ (((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → 𝑏 ∈ 𝑉) | |
| 14 | simplrr 777 | . . . . . 6 ⊢ (((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → 𝐶 ∈ 𝑉) | |
| 15 | usgr2wspthon0.e | . . . . . . 7 ⊢ 𝐸 = (Edg‘𝐺) | |
| 16 | 7, 15 | usgr2wspthons3 29901 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ (𝐴 ≠ 𝐶 ∧ {𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))) |
| 17 | 11, 12, 13, 14, 16 | syl13anc 1374 | . . . . 5 ⊢ (((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → (〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ (𝐴 ≠ 𝐶 ∧ {𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))) |
| 18 | 17 | anbi2d 630 | . . . 4 ⊢ (((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → ((𝑇 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) ↔ (𝑇 = 〈“𝐴𝑏𝐶”〉 ∧ (𝐴 ≠ 𝐶 ∧ {𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)))) |
| 19 | anass 468 | . . . . 5 ⊢ (((𝑇 = 〈“𝐴𝑏𝐶”〉 ∧ 𝐴 ≠ 𝐶) ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)) ↔ (𝑇 = 〈“𝐴𝑏𝐶”〉 ∧ (𝐴 ≠ 𝐶 ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)))) | |
| 20 | 3anass 1094 | . . . . . . 7 ⊢ ((𝐴 ≠ 𝐶 ∧ {𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸) ↔ (𝐴 ≠ 𝐶 ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))) | |
| 21 | 20 | bicomi 224 | . . . . . 6 ⊢ ((𝐴 ≠ 𝐶 ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)) ↔ (𝐴 ≠ 𝐶 ∧ {𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)) |
| 22 | 21 | anbi2i 623 | . . . . 5 ⊢ ((𝑇 = 〈“𝐴𝑏𝐶”〉 ∧ (𝐴 ≠ 𝐶 ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))) ↔ (𝑇 = 〈“𝐴𝑏𝐶”〉 ∧ (𝐴 ≠ 𝐶 ∧ {𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))) |
| 23 | 19, 22 | bitri 275 | . . . 4 ⊢ (((𝑇 = 〈“𝐴𝑏𝐶”〉 ∧ 𝐴 ≠ 𝐶) ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)) ↔ (𝑇 = 〈“𝐴𝑏𝐶”〉 ∧ (𝐴 ≠ 𝐶 ∧ {𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))) |
| 24 | 18, 23 | bitr4di 289 | . . 3 ⊢ (((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → ((𝑇 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) ↔ ((𝑇 = 〈“𝐴𝑏𝐶”〉 ∧ 𝐴 ≠ 𝐶) ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)))) |
| 25 | 24 | rexbidva 3156 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (∃𝑏 ∈ 𝑉 (𝑇 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) ↔ ∃𝑏 ∈ 𝑉 ((𝑇 = 〈“𝐴𝑏𝐶”〉 ∧ 𝐴 ≠ 𝐶) ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)))) |
| 26 | 9, 25 | bitrd 279 | 1 ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝑇 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ ∃𝑏 ∈ 𝑉 ((𝑇 = 〈“𝐴𝑏𝐶”〉 ∧ 𝐴 ≠ 𝐶) ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∃wrex 3054 {cpr 4594 ‘cfv 6514 (class class class)co 7390 2c2 12248 〈“cs3 14815 Vtxcvtx 28930 Edgcedg 28981 UPGraphcupgr 29014 USGraphcusgr 29083 WSPathsNOn cwwspthsnon 29766 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-ac2 10423 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-oadd 8441 df-er 8674 df-map 8804 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-dju 9861 df-card 9899 df-ac 10076 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-xnn0 12523 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 df-hash 14303 df-word 14486 df-concat 14543 df-s1 14568 df-s2 14821 df-s3 14822 df-edg 28982 df-uhgr 28992 df-upgr 29016 df-umgr 29017 df-uspgr 29084 df-usgr 29085 df-wlks 29534 df-wlkson 29535 df-trls 29627 df-trlson 29628 df-pths 29651 df-spths 29652 df-pthson 29653 df-spthson 29654 df-wwlks 29767 df-wwlksn 29768 df-wwlksnon 29769 df-wspthsnon 29771 |
| This theorem is referenced by: fusgr2wsp2nb 30270 |
| Copyright terms: Public domain | W3C validator |