![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgr2wspthon | Structured version Visualization version GIF version |
Description: A simple path of length 2 between two vertices corresponds to two adjacent edges in a simple graph. (Contributed by Alexander van der Vekens, 9-Mar-2018.) (Revised by AV, 17-May-2021.) |
Ref | Expression |
---|---|
usgr2wspthon0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
usgr2wspthon0.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
usgr2wspthon | ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝑇 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ ∃𝑏 ∈ 𝑉 ((𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ 𝐴 ≠ 𝐶) ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | usgrupgr 28709 | . . . 4 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph) | |
2 | 1 | adantr 479 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐺 ∈ UPGraph) |
3 | simpl 481 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
4 | 3 | adantl 480 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐴 ∈ 𝑉) |
5 | simpr 483 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → 𝐶 ∈ 𝑉) | |
6 | 5 | adantl 480 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐶 ∈ 𝑉) |
7 | usgr2wspthon0.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
8 | 7 | elwspths2on 29481 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝑇 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ ∃𝑏 ∈ 𝑉 (𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))) |
9 | 2, 4, 6, 8 | syl3anc 1369 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝑇 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ ∃𝑏 ∈ 𝑉 (𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))) |
10 | simpl 481 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐺 ∈ USGraph) | |
11 | 10 | adantr 479 | . . . . . 6 ⊢ (((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → 𝐺 ∈ USGraph) |
12 | simplrl 773 | . . . . . 6 ⊢ (((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
13 | simpr 483 | . . . . . 6 ⊢ (((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → 𝑏 ∈ 𝑉) | |
14 | simplrr 774 | . . . . . 6 ⊢ (((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → 𝐶 ∈ 𝑉) | |
15 | usgr2wspthon0.e | . . . . . . 7 ⊢ 𝐸 = (Edg‘𝐺) | |
16 | 7, 15 | usgr2wspthons3 29485 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ (𝐴 ≠ 𝐶 ∧ {𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))) |
17 | 11, 12, 13, 14, 16 | syl13anc 1370 | . . . . 5 ⊢ (((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → (⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ (𝐴 ≠ 𝐶 ∧ {𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))) |
18 | 17 | anbi2d 627 | . . . 4 ⊢ (((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → ((𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) ↔ (𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ (𝐴 ≠ 𝐶 ∧ {𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)))) |
19 | anass 467 | . . . . 5 ⊢ (((𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ 𝐴 ≠ 𝐶) ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)) ↔ (𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ (𝐴 ≠ 𝐶 ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)))) | |
20 | 3anass 1093 | . . . . . . 7 ⊢ ((𝐴 ≠ 𝐶 ∧ {𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸) ↔ (𝐴 ≠ 𝐶 ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))) | |
21 | 20 | bicomi 223 | . . . . . 6 ⊢ ((𝐴 ≠ 𝐶 ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)) ↔ (𝐴 ≠ 𝐶 ∧ {𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)) |
22 | 21 | anbi2i 621 | . . . . 5 ⊢ ((𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ (𝐴 ≠ 𝐶 ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))) ↔ (𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ (𝐴 ≠ 𝐶 ∧ {𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))) |
23 | 19, 22 | bitri 274 | . . . 4 ⊢ (((𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ 𝐴 ≠ 𝐶) ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)) ↔ (𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ (𝐴 ≠ 𝐶 ∧ {𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))) |
24 | 18, 23 | bitr4di 288 | . . 3 ⊢ (((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → ((𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) ↔ ((𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ 𝐴 ≠ 𝐶) ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)))) |
25 | 24 | rexbidva 3174 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (∃𝑏 ∈ 𝑉 (𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) ↔ ∃𝑏 ∈ 𝑉 ((𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ 𝐴 ≠ 𝐶) ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)))) |
26 | 9, 25 | bitrd 278 | 1 ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝑇 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ ∃𝑏 ∈ 𝑉 ((𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ 𝐴 ≠ 𝐶) ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1085 = wceq 1539 ∈ wcel 2104 ≠ wne 2938 ∃wrex 3068 {cpr 4629 ‘cfv 6542 (class class class)co 7411 2c2 12271 ⟨“cs3 14797 Vtxcvtx 28523 Edgcedg 28574 UPGraphcupgr 28607 USGraphcusgr 28676 WSPathsNOn cwwspthsnon 29350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-ac2 10460 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-ifp 1060 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-2o 8469 df-oadd 8472 df-er 8705 df-map 8824 df-pm 8825 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-dju 9898 df-card 9936 df-ac 10113 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-xnn0 12549 df-z 12563 df-uz 12827 df-fz 13489 df-fzo 13632 df-hash 14295 df-word 14469 df-concat 14525 df-s1 14550 df-s2 14803 df-s3 14804 df-edg 28575 df-uhgr 28585 df-upgr 28609 df-umgr 28610 df-uspgr 28677 df-usgr 28678 df-wlks 29123 df-wlkson 29124 df-trls 29216 df-trlson 29217 df-pths 29240 df-spths 29241 df-pthson 29242 df-spthson 29243 df-wwlks 29351 df-wwlksn 29352 df-wwlksnon 29353 df-wspthsnon 29355 |
This theorem is referenced by: fusgr2wsp2nb 29854 |
Copyright terms: Public domain | W3C validator |