MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr2wspthon Structured version   Visualization version   GIF version

Theorem usgr2wspthon 29910
Description: A simple path of length 2 between two vertices corresponds to two adjacent edges in a simple graph. (Contributed by Alexander van der Vekens, 9-Mar-2018.) (Revised by AV, 17-May-2021.)
Hypotheses
Ref Expression
usgr2wspthon0.v 𝑉 = (Vtx‘𝐺)
usgr2wspthon0.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
usgr2wspthon ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉)) → (𝑇 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ ∃𝑏𝑉 ((𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ 𝐴𝐶) ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))))
Distinct variable groups:   𝐴,𝑏   𝐶,𝑏   𝐺,𝑏   𝑉,𝑏   𝑇,𝑏
Allowed substitution hint:   𝐸(𝑏)

Proof of Theorem usgr2wspthon
StepHypRef Expression
1 usgrupgr 29130 . . . 4 (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph)
21adantr 480 . . 3 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉)) → 𝐺 ∈ UPGraph)
3 simpl 482 . . . 4 ((𝐴𝑉𝐶𝑉) → 𝐴𝑉)
43adantl 481 . . 3 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉)) → 𝐴𝑉)
5 simpr 484 . . . 4 ((𝐴𝑉𝐶𝑉) → 𝐶𝑉)
65adantl 481 . . 3 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉)) → 𝐶𝑉)
7 usgr2wspthon0.v . . . 4 𝑉 = (Vtx‘𝐺)
87elwspths2on 29905 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐴𝑉𝐶𝑉) → (𝑇 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ ∃𝑏𝑉 (𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))))
92, 4, 6, 8syl3anc 1373 . 2 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉)) → (𝑇 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ ∃𝑏𝑉 (𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))))
10 simpl 482 . . . . . . 7 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉)) → 𝐺 ∈ USGraph)
1110adantr 480 . . . . . 6 (((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉)) ∧ 𝑏𝑉) → 𝐺 ∈ USGraph)
12 simplrl 776 . . . . . 6 (((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉)) ∧ 𝑏𝑉) → 𝐴𝑉)
13 simpr 484 . . . . . 6 (((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉)) ∧ 𝑏𝑉) → 𝑏𝑉)
14 simplrr 777 . . . . . 6 (((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉)) ∧ 𝑏𝑉) → 𝐶𝑉)
15 usgr2wspthon0.e . . . . . . 7 𝐸 = (Edg‘𝐺)
167, 15usgr2wspthons3 29909 . . . . . 6 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝑏𝑉𝐶𝑉)) → (⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ (𝐴𝐶 ∧ {𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)))
1711, 12, 13, 14, 16syl13anc 1374 . . . . 5 (((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉)) ∧ 𝑏𝑉) → (⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ (𝐴𝐶 ∧ {𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)))
1817anbi2d 630 . . . 4 (((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉)) ∧ 𝑏𝑉) → ((𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) ↔ (𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ (𝐴𝐶 ∧ {𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))))
19 anass 468 . . . . 5 (((𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ 𝐴𝐶) ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)) ↔ (𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ (𝐴𝐶 ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))))
20 3anass 1094 . . . . . . 7 ((𝐴𝐶 ∧ {𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸) ↔ (𝐴𝐶 ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)))
2120bicomi 224 . . . . . 6 ((𝐴𝐶 ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)) ↔ (𝐴𝐶 ∧ {𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))
2221anbi2i 623 . . . . 5 ((𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ (𝐴𝐶 ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))) ↔ (𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ (𝐴𝐶 ∧ {𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)))
2319, 22bitri 275 . . . 4 (((𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ 𝐴𝐶) ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)) ↔ (𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ (𝐴𝐶 ∧ {𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)))
2418, 23bitr4di 289 . . 3 (((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉)) ∧ 𝑏𝑉) → ((𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) ↔ ((𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ 𝐴𝐶) ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))))
2524rexbidva 3151 . 2 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉)) → (∃𝑏𝑉 (𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) ↔ ∃𝑏𝑉 ((𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ 𝐴𝐶) ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))))
269, 25bitrd 279 1 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉)) → (𝑇 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ ∃𝑏𝑉 ((𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ 𝐴𝐶) ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  {cpr 4579  cfv 6482  (class class class)co 7349  2c2 12183  ⟨“cs3 14749  Vtxcvtx 28941  Edgcedg 28992  UPGraphcupgr 29025  USGraphcusgr 29094   WSPathsNOn cwwspthsnon 29774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-ac2 10357  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-dju 9797  df-card 9835  df-ac 10010  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-xnn0 12458  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558  df-hash 14238  df-word 14421  df-concat 14478  df-s1 14503  df-s2 14755  df-s3 14756  df-edg 28993  df-uhgr 29003  df-upgr 29027  df-umgr 29028  df-uspgr 29095  df-usgr 29096  df-wlks 29545  df-wlkson 29546  df-trls 29636  df-trlson 29637  df-pths 29659  df-spths 29660  df-pthson 29661  df-spthson 29662  df-wwlks 29775  df-wwlksn 29776  df-wwlksnon 29777  df-wspthsnon 29779
This theorem is referenced by:  fusgr2wsp2nb  30278
  Copyright terms: Public domain W3C validator