MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr2wspthon Structured version   Visualization version   GIF version

Theorem usgr2wspthon 29995
Description: A simple path of length 2 between two vertices corresponds to two adjacent edges in a simple graph. (Contributed by Alexander van der Vekens, 9-Mar-2018.) (Revised by AV, 17-May-2021.)
Hypotheses
Ref Expression
usgr2wspthon0.v 𝑉 = (Vtx‘𝐺)
usgr2wspthon0.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
usgr2wspthon ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉)) → (𝑇 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ ∃𝑏𝑉 ((𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ 𝐴𝐶) ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))))
Distinct variable groups:   𝐴,𝑏   𝐶,𝑏   𝐺,𝑏   𝑉,𝑏   𝑇,𝑏
Allowed substitution hint:   𝐸(𝑏)

Proof of Theorem usgr2wspthon
StepHypRef Expression
1 usgrupgr 29217 . . . 4 (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph)
21adantr 480 . . 3 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉)) → 𝐺 ∈ UPGraph)
3 simpl 482 . . . 4 ((𝐴𝑉𝐶𝑉) → 𝐴𝑉)
43adantl 481 . . 3 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉)) → 𝐴𝑉)
5 simpr 484 . . . 4 ((𝐴𝑉𝐶𝑉) → 𝐶𝑉)
65adantl 481 . . 3 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉)) → 𝐶𝑉)
7 usgr2wspthon0.v . . . 4 𝑉 = (Vtx‘𝐺)
87elwspths2on 29990 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐴𝑉𝐶𝑉) → (𝑇 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ ∃𝑏𝑉 (𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))))
92, 4, 6, 8syl3anc 1370 . 2 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉)) → (𝑇 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ ∃𝑏𝑉 (𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))))
10 simpl 482 . . . . . . 7 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉)) → 𝐺 ∈ USGraph)
1110adantr 480 . . . . . 6 (((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉)) ∧ 𝑏𝑉) → 𝐺 ∈ USGraph)
12 simplrl 777 . . . . . 6 (((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉)) ∧ 𝑏𝑉) → 𝐴𝑉)
13 simpr 484 . . . . . 6 (((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉)) ∧ 𝑏𝑉) → 𝑏𝑉)
14 simplrr 778 . . . . . 6 (((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉)) ∧ 𝑏𝑉) → 𝐶𝑉)
15 usgr2wspthon0.e . . . . . . 7 𝐸 = (Edg‘𝐺)
167, 15usgr2wspthons3 29994 . . . . . 6 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝑏𝑉𝐶𝑉)) → (⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ (𝐴𝐶 ∧ {𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)))
1711, 12, 13, 14, 16syl13anc 1371 . . . . 5 (((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉)) ∧ 𝑏𝑉) → (⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ (𝐴𝐶 ∧ {𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)))
1817anbi2d 630 . . . 4 (((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉)) ∧ 𝑏𝑉) → ((𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) ↔ (𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ (𝐴𝐶 ∧ {𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))))
19 anass 468 . . . . 5 (((𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ 𝐴𝐶) ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)) ↔ (𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ (𝐴𝐶 ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))))
20 3anass 1094 . . . . . . 7 ((𝐴𝐶 ∧ {𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸) ↔ (𝐴𝐶 ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)))
2120bicomi 224 . . . . . 6 ((𝐴𝐶 ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)) ↔ (𝐴𝐶 ∧ {𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))
2221anbi2i 623 . . . . 5 ((𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ (𝐴𝐶 ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))) ↔ (𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ (𝐴𝐶 ∧ {𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)))
2319, 22bitri 275 . . . 4 (((𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ 𝐴𝐶) ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)) ↔ (𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ (𝐴𝐶 ∧ {𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)))
2418, 23bitr4di 289 . . 3 (((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉)) ∧ 𝑏𝑉) → ((𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) ↔ ((𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ 𝐴𝐶) ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))))
2524rexbidva 3175 . 2 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉)) → (∃𝑏𝑉 (𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) ↔ ∃𝑏𝑉 ((𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ 𝐴𝐶) ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))))
269, 25bitrd 279 1 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉)) → (𝑇 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ ∃𝑏𝑉 ((𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ 𝐴𝐶) ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wrex 3068  {cpr 4633  cfv 6563  (class class class)co 7431  2c2 12319  ⟨“cs3 14878  Vtxcvtx 29028  Edgcedg 29079  UPGraphcupgr 29112  USGraphcusgr 29181   WSPathsNOn cwwspthsnon 29859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-ac2 10501  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-dju 9939  df-card 9977  df-ac 10154  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-concat 14606  df-s1 14631  df-s2 14884  df-s3 14885  df-edg 29080  df-uhgr 29090  df-upgr 29114  df-umgr 29115  df-uspgr 29182  df-usgr 29183  df-wlks 29632  df-wlkson 29633  df-trls 29725  df-trlson 29726  df-pths 29749  df-spths 29750  df-pthson 29751  df-spthson 29752  df-wwlks 29860  df-wwlksn 29861  df-wwlksnon 29862  df-wspthsnon 29864
This theorem is referenced by:  fusgr2wsp2nb  30363
  Copyright terms: Public domain W3C validator