![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgr2wspthon | Structured version Visualization version GIF version |
Description: A simple path of length 2 between two vertices corresponds to two adjacent edges in a simple graph. (Contributed by Alexander van der Vekens, 9-Mar-2018.) (Revised by AV, 17-May-2021.) |
Ref | Expression |
---|---|
usgr2wspthon0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
usgr2wspthon0.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
usgr2wspthon | ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝑇 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ ∃𝑏 ∈ 𝑉 ((𝑇 = 〈“𝐴𝑏𝐶”〉 ∧ 𝐴 ≠ 𝐶) ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | usgrupgr 28911 | . . . 4 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐺 ∈ UPGraph) |
3 | simpl 482 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
4 | 3 | adantl 481 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐴 ∈ 𝑉) |
5 | simpr 484 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → 𝐶 ∈ 𝑉) | |
6 | 5 | adantl 481 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐶 ∈ 𝑉) |
7 | usgr2wspthon0.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
8 | 7 | elwspths2on 29683 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝑇 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ ∃𝑏 ∈ 𝑉 (𝑇 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))) |
9 | 2, 4, 6, 8 | syl3anc 1368 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝑇 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ ∃𝑏 ∈ 𝑉 (𝑇 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))) |
10 | simpl 482 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐺 ∈ USGraph) | |
11 | 10 | adantr 480 | . . . . . 6 ⊢ (((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → 𝐺 ∈ USGraph) |
12 | simplrl 774 | . . . . . 6 ⊢ (((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
13 | simpr 484 | . . . . . 6 ⊢ (((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → 𝑏 ∈ 𝑉) | |
14 | simplrr 775 | . . . . . 6 ⊢ (((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → 𝐶 ∈ 𝑉) | |
15 | usgr2wspthon0.e | . . . . . . 7 ⊢ 𝐸 = (Edg‘𝐺) | |
16 | 7, 15 | usgr2wspthons3 29687 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ (𝐴 ≠ 𝐶 ∧ {𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))) |
17 | 11, 12, 13, 14, 16 | syl13anc 1369 | . . . . 5 ⊢ (((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → (〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ (𝐴 ≠ 𝐶 ∧ {𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))) |
18 | 17 | anbi2d 628 | . . . 4 ⊢ (((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → ((𝑇 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) ↔ (𝑇 = 〈“𝐴𝑏𝐶”〉 ∧ (𝐴 ≠ 𝐶 ∧ {𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)))) |
19 | anass 468 | . . . . 5 ⊢ (((𝑇 = 〈“𝐴𝑏𝐶”〉 ∧ 𝐴 ≠ 𝐶) ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)) ↔ (𝑇 = 〈“𝐴𝑏𝐶”〉 ∧ (𝐴 ≠ 𝐶 ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)))) | |
20 | 3anass 1092 | . . . . . . 7 ⊢ ((𝐴 ≠ 𝐶 ∧ {𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸) ↔ (𝐴 ≠ 𝐶 ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))) | |
21 | 20 | bicomi 223 | . . . . . 6 ⊢ ((𝐴 ≠ 𝐶 ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)) ↔ (𝐴 ≠ 𝐶 ∧ {𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)) |
22 | 21 | anbi2i 622 | . . . . 5 ⊢ ((𝑇 = 〈“𝐴𝑏𝐶”〉 ∧ (𝐴 ≠ 𝐶 ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))) ↔ (𝑇 = 〈“𝐴𝑏𝐶”〉 ∧ (𝐴 ≠ 𝐶 ∧ {𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))) |
23 | 19, 22 | bitri 275 | . . . 4 ⊢ (((𝑇 = 〈“𝐴𝑏𝐶”〉 ∧ 𝐴 ≠ 𝐶) ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)) ↔ (𝑇 = 〈“𝐴𝑏𝐶”〉 ∧ (𝐴 ≠ 𝐶 ∧ {𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))) |
24 | 18, 23 | bitr4di 289 | . . 3 ⊢ (((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → ((𝑇 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) ↔ ((𝑇 = 〈“𝐴𝑏𝐶”〉 ∧ 𝐴 ≠ 𝐶) ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)))) |
25 | 24 | rexbidva 3168 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (∃𝑏 ∈ 𝑉 (𝑇 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) ↔ ∃𝑏 ∈ 𝑉 ((𝑇 = 〈“𝐴𝑏𝐶”〉 ∧ 𝐴 ≠ 𝐶) ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)))) |
26 | 9, 25 | bitrd 279 | 1 ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝑇 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ ∃𝑏 ∈ 𝑉 ((𝑇 = 〈“𝐴𝑏𝐶”〉 ∧ 𝐴 ≠ 𝐶) ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 ∃wrex 3062 {cpr 4622 ‘cfv 6533 (class class class)co 7401 2c2 12264 〈“cs3 14790 Vtxcvtx 28725 Edgcedg 28776 UPGraphcupgr 28809 USGraphcusgr 28878 WSPathsNOn cwwspthsnon 29552 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-ac2 10454 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-ifp 1060 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-2o 8462 df-oadd 8465 df-er 8699 df-map 8818 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-dju 9892 df-card 9930 df-ac 10107 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-2 12272 df-3 12273 df-n0 12470 df-xnn0 12542 df-z 12556 df-uz 12820 df-fz 13482 df-fzo 13625 df-hash 14288 df-word 14462 df-concat 14518 df-s1 14543 df-s2 14796 df-s3 14797 df-edg 28777 df-uhgr 28787 df-upgr 28811 df-umgr 28812 df-uspgr 28879 df-usgr 28880 df-wlks 29325 df-wlkson 29326 df-trls 29418 df-trlson 29419 df-pths 29442 df-spths 29443 df-pthson 29444 df-spthson 29445 df-wwlks 29553 df-wwlksn 29554 df-wwlksnon 29555 df-wspthsnon 29557 |
This theorem is referenced by: fusgr2wsp2nb 30056 |
Copyright terms: Public domain | W3C validator |