MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwapf Structured version   Visualization version   GIF version

Theorem vdwapf 16300
Description: The arithmetic progression function is a function. (Contributed by Mario Carneiro, 18-Aug-2014.)
Assertion
Ref Expression
vdwapf (𝐾 ∈ ℕ0 → (AP‘𝐾):(ℕ × ℕ)⟶𝒫 ℕ)

Proof of Theorem vdwapf
Dummy variables 𝑎 𝑑 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 765 . . . . . . . 8 (((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑎 ∈ ℕ)
2 elfznn0 12992 . . . . . . . . . 10 (𝑚 ∈ (0...(𝐾 − 1)) → 𝑚 ∈ ℕ0)
32adantl 484 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈ ℕ0)
4 nnnn0 11896 . . . . . . . . . 10 (𝑑 ∈ ℕ → 𝑑 ∈ ℕ0)
54ad2antlr 725 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑑 ∈ ℕ0)
63, 5nn0mulcld 11952 . . . . . . . 8 (((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · 𝑑) ∈ ℕ0)
7 nnnn0addcl 11919 . . . . . . . 8 ((𝑎 ∈ ℕ ∧ (𝑚 · 𝑑) ∈ ℕ0) → (𝑎 + (𝑚 · 𝑑)) ∈ ℕ)
81, 6, 7syl2anc 586 . . . . . . 7 (((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑎 + (𝑚 · 𝑑)) ∈ ℕ)
98fmpttd 6872 . . . . . 6 ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))):(0...(𝐾 − 1))⟶ℕ)
109frnd 6514 . . . . 5 ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) ⊆ ℕ)
11 nnex 11636 . . . . . 6 ℕ ∈ V
1211elpw2 5239 . . . . 5 (ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) ∈ 𝒫 ℕ ↔ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) ⊆ ℕ)
1310, 12sylibr 236 . . . 4 ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) ∈ 𝒫 ℕ)
1413rgen2 3201 . . 3 𝑎 ∈ ℕ ∀𝑑 ∈ ℕ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) ∈ 𝒫 ℕ
15 eqid 2819 . . . 4 (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))) = (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))))
1615fmpo 7758 . . 3 (∀𝑎 ∈ ℕ ∀𝑑 ∈ ℕ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) ∈ 𝒫 ℕ ↔ (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))):(ℕ × ℕ)⟶𝒫 ℕ)
1714, 16mpbi 232 . 2 (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))):(ℕ × ℕ)⟶𝒫 ℕ
18 vdwapfval 16299 . . 3 (𝐾 ∈ ℕ0 → (AP‘𝐾) = (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))))
1918feq1d 6492 . 2 (𝐾 ∈ ℕ0 → ((AP‘𝐾):(ℕ × ℕ)⟶𝒫 ℕ ↔ (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))):(ℕ × ℕ)⟶𝒫 ℕ))
2017, 19mpbiri 260 1 (𝐾 ∈ ℕ0 → (AP‘𝐾):(ℕ × ℕ)⟶𝒫 ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2107  wral 3136  wss 3934  𝒫 cpw 4537  cmpt 5137   × cxp 5546  ran crn 5549  wf 6344  cfv 6348  (class class class)co 7148  cmpo 7150  0cc0 10529  1c1 10530   + caddc 10532   · cmul 10534  cmin 10862  cn 11630  0cn0 11889  ...cfz 12884  APcvdwa 16293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12885  df-vdwap 16296
This theorem is referenced by:  vdwmc  16306
  Copyright terms: Public domain W3C validator