MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwapf Structured version   Visualization version   GIF version

Theorem vdwapf 16992
Description: The arithmetic progression function is a function. (Contributed by Mario Carneiro, 18-Aug-2014.)
Assertion
Ref Expression
vdwapf (𝐾 ∈ ℕ0 → (AP‘𝐾):(ℕ × ℕ)⟶𝒫 ℕ)

Proof of Theorem vdwapf
Dummy variables 𝑎 𝑑 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . . . . . 8 (((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑎 ∈ ℕ)
2 elfznn0 13637 . . . . . . . . . 10 (𝑚 ∈ (0...(𝐾 − 1)) → 𝑚 ∈ ℕ0)
32adantl 481 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈ ℕ0)
4 nnnn0 12508 . . . . . . . . . 10 (𝑑 ∈ ℕ → 𝑑 ∈ ℕ0)
54ad2antlr 727 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑑 ∈ ℕ0)
63, 5nn0mulcld 12567 . . . . . . . 8 (((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · 𝑑) ∈ ℕ0)
7 nnnn0addcl 12531 . . . . . . . 8 ((𝑎 ∈ ℕ ∧ (𝑚 · 𝑑) ∈ ℕ0) → (𝑎 + (𝑚 · 𝑑)) ∈ ℕ)
81, 6, 7syl2anc 584 . . . . . . 7 (((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑎 + (𝑚 · 𝑑)) ∈ ℕ)
98fmpttd 7105 . . . . . 6 ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))):(0...(𝐾 − 1))⟶ℕ)
109frnd 6714 . . . . 5 ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) ⊆ ℕ)
11 nnex 12246 . . . . . 6 ℕ ∈ V
1211elpw2 5304 . . . . 5 (ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) ∈ 𝒫 ℕ ↔ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) ⊆ ℕ)
1310, 12sylibr 234 . . . 4 ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) ∈ 𝒫 ℕ)
1413rgen2 3184 . . 3 𝑎 ∈ ℕ ∀𝑑 ∈ ℕ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) ∈ 𝒫 ℕ
15 eqid 2735 . . . 4 (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))) = (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))))
1615fmpo 8067 . . 3 (∀𝑎 ∈ ℕ ∀𝑑 ∈ ℕ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) ∈ 𝒫 ℕ ↔ (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))):(ℕ × ℕ)⟶𝒫 ℕ)
1714, 16mpbi 230 . 2 (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))):(ℕ × ℕ)⟶𝒫 ℕ
18 vdwapfval 16991 . . 3 (𝐾 ∈ ℕ0 → (AP‘𝐾) = (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))))
1918feq1d 6690 . 2 (𝐾 ∈ ℕ0 → ((AP‘𝐾):(ℕ × ℕ)⟶𝒫 ℕ ↔ (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))):(ℕ × ℕ)⟶𝒫 ℕ))
2017, 19mpbiri 258 1 (𝐾 ∈ ℕ0 → (AP‘𝐾):(ℕ × ℕ)⟶𝒫 ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wral 3051  wss 3926  𝒫 cpw 4575  cmpt 5201   × cxp 5652  ran crn 5655  wf 6527  cfv 6531  (class class class)co 7405  cmpo 7407  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134  cmin 11466  cn 12240  0cn0 12501  ...cfz 13524  APcvdwa 16985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-vdwap 16988
This theorem is referenced by:  vdwmc  16998
  Copyright terms: Public domain W3C validator