MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwapf Structured version   Visualization version   GIF version

Theorem vdwapf 16420
Description: The arithmetic progression function is a function. (Contributed by Mario Carneiro, 18-Aug-2014.)
Assertion
Ref Expression
vdwapf (𝐾 ∈ ℕ0 → (AP‘𝐾):(ℕ × ℕ)⟶𝒫 ℕ)

Proof of Theorem vdwapf
Dummy variables 𝑎 𝑑 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 767 . . . . . . . 8 (((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑎 ∈ ℕ)
2 elfznn0 13103 . . . . . . . . . 10 (𝑚 ∈ (0...(𝐾 − 1)) → 𝑚 ∈ ℕ0)
32adantl 485 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈ ℕ0)
4 nnnn0 11995 . . . . . . . . . 10 (𝑑 ∈ ℕ → 𝑑 ∈ ℕ0)
54ad2antlr 727 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑑 ∈ ℕ0)
63, 5nn0mulcld 12053 . . . . . . . 8 (((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · 𝑑) ∈ ℕ0)
7 nnnn0addcl 12018 . . . . . . . 8 ((𝑎 ∈ ℕ ∧ (𝑚 · 𝑑) ∈ ℕ0) → (𝑎 + (𝑚 · 𝑑)) ∈ ℕ)
81, 6, 7syl2anc 587 . . . . . . 7 (((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑎 + (𝑚 · 𝑑)) ∈ ℕ)
98fmpttd 6901 . . . . . 6 ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))):(0...(𝐾 − 1))⟶ℕ)
109frnd 6522 . . . . 5 ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) ⊆ ℕ)
11 nnex 11734 . . . . . 6 ℕ ∈ V
1211elpw2 5223 . . . . 5 (ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) ∈ 𝒫 ℕ ↔ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) ⊆ ℕ)
1310, 12sylibr 237 . . . 4 ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) ∈ 𝒫 ℕ)
1413rgen2 3116 . . 3 𝑎 ∈ ℕ ∀𝑑 ∈ ℕ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) ∈ 𝒫 ℕ
15 eqid 2739 . . . 4 (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))) = (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))))
1615fmpo 7803 . . 3 (∀𝑎 ∈ ℕ ∀𝑑 ∈ ℕ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) ∈ 𝒫 ℕ ↔ (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))):(ℕ × ℕ)⟶𝒫 ℕ)
1714, 16mpbi 233 . 2 (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))):(ℕ × ℕ)⟶𝒫 ℕ
18 vdwapfval 16419 . . 3 (𝐾 ∈ ℕ0 → (AP‘𝐾) = (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))))
1918feq1d 6499 . 2 (𝐾 ∈ ℕ0 → ((AP‘𝐾):(ℕ × ℕ)⟶𝒫 ℕ ↔ (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))):(ℕ × ℕ)⟶𝒫 ℕ))
2017, 19mpbiri 261 1 (𝐾 ∈ ℕ0 → (AP‘𝐾):(ℕ × ℕ)⟶𝒫 ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2114  wral 3054  wss 3853  𝒫 cpw 4498  cmpt 5120   × cxp 5533  ran crn 5536  wf 6345  cfv 6349  (class class class)co 7182  cmpo 7184  0cc0 10627  1c1 10628   + caddc 10630   · cmul 10632  cmin 10960  cn 11728  0cn0 11988  ...cfz 12993  APcvdwa 16413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7491  ax-cnex 10683  ax-resscn 10684  ax-1cn 10685  ax-icn 10686  ax-addcl 10687  ax-addrcl 10688  ax-mulcl 10689  ax-mulrcl 10690  ax-mulcom 10691  ax-addass 10692  ax-mulass 10693  ax-distr 10694  ax-i2m1 10695  ax-1ne0 10696  ax-1rid 10697  ax-rnegex 10698  ax-rrecex 10699  ax-cnre 10700  ax-pre-lttri 10701  ax-pre-lttrn 10702  ax-pre-ltadd 10703  ax-pre-mulgt0 10704
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-pred 6139  df-ord 6185  df-on 6186  df-lim 6187  df-suc 6188  df-iota 6307  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7139  df-ov 7185  df-oprab 7186  df-mpo 7187  df-om 7612  df-1st 7726  df-2nd 7727  df-wrecs 7988  df-recs 8049  df-rdg 8087  df-er 8332  df-en 8568  df-dom 8569  df-sdom 8570  df-pnf 10767  df-mnf 10768  df-xr 10769  df-ltxr 10770  df-le 10771  df-sub 10962  df-neg 10963  df-nn 11729  df-n0 11989  df-z 12075  df-uz 12337  df-fz 12994  df-vdwap 16416
This theorem is referenced by:  vdwmc  16426
  Copyright terms: Public domain W3C validator