MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wuncidm Structured version   Visualization version   GIF version

Theorem wuncidm 10637
Description: The weak universe closure is idempotent. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
wuncidm (𝐴𝑉 → (wUniCl‘(wUniCl‘𝐴)) = (wUniCl‘𝐴))

Proof of Theorem wuncidm
StepHypRef Expression
1 wunccl 10635 . . 3 (𝐴𝑉 → (wUniCl‘𝐴) ∈ WUni)
2 ssid 3952 . . 3 (wUniCl‘𝐴) ⊆ (wUniCl‘𝐴)
3 wuncss 10636 . . 3 (((wUniCl‘𝐴) ∈ WUni ∧ (wUniCl‘𝐴) ⊆ (wUniCl‘𝐴)) → (wUniCl‘(wUniCl‘𝐴)) ⊆ (wUniCl‘𝐴))
41, 2, 3sylancl 586 . 2 (𝐴𝑉 → (wUniCl‘(wUniCl‘𝐴)) ⊆ (wUniCl‘𝐴))
5 wuncid 10634 . . 3 ((wUniCl‘𝐴) ∈ WUni → (wUniCl‘𝐴) ⊆ (wUniCl‘(wUniCl‘𝐴)))
61, 5syl 17 . 2 (𝐴𝑉 → (wUniCl‘𝐴) ⊆ (wUniCl‘(wUniCl‘𝐴)))
74, 6eqssd 3947 1 (𝐴𝑉 → (wUniCl‘(wUniCl‘𝐴)) = (wUniCl‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wss 3897  cfv 6481  WUnicwun 10591  wUniClcwunm 10592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-wun 10593  df-wunc 10594
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator