![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wuncidm | Structured version Visualization version GIF version |
Description: The weak universe closure is idempotent. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wuncidm | ⊢ (𝐴 ∈ 𝑉 → (wUniCl‘(wUniCl‘𝐴)) = (wUniCl‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wunccl 10735 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (wUniCl‘𝐴) ∈ WUni) | |
2 | ssid 3996 | . . 3 ⊢ (wUniCl‘𝐴) ⊆ (wUniCl‘𝐴) | |
3 | wuncss 10736 | . . 3 ⊢ (((wUniCl‘𝐴) ∈ WUni ∧ (wUniCl‘𝐴) ⊆ (wUniCl‘𝐴)) → (wUniCl‘(wUniCl‘𝐴)) ⊆ (wUniCl‘𝐴)) | |
4 | 1, 2, 3 | sylancl 585 | . 2 ⊢ (𝐴 ∈ 𝑉 → (wUniCl‘(wUniCl‘𝐴)) ⊆ (wUniCl‘𝐴)) |
5 | wuncid 10734 | . . 3 ⊢ ((wUniCl‘𝐴) ∈ WUni → (wUniCl‘𝐴) ⊆ (wUniCl‘(wUniCl‘𝐴))) | |
6 | 1, 5 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑉 → (wUniCl‘𝐴) ⊆ (wUniCl‘(wUniCl‘𝐴))) |
7 | 4, 6 | eqssd 3991 | 1 ⊢ (𝐴 ∈ 𝑉 → (wUniCl‘(wUniCl‘𝐴)) = (wUniCl‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ⊆ wss 3940 ‘cfv 6533 WUnicwun 10691 wUniClcwunm 10692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-inf2 9632 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 df-om 7849 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-wun 10693 df-wunc 10694 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |