![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xposdif | Structured version Visualization version GIF version |
Description: Extended real version of posdif 11703. (Contributed by Mario Carneiro, 24-Aug-2015.) |
Ref | Expression |
---|---|
xposdif | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒 -𝑒𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xnegcl 13188 | . . . 4 ⊢ (𝐵 ∈ ℝ* → -𝑒𝐵 ∈ ℝ*) | |
2 | xaddcl 13214 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ -𝑒𝐵 ∈ ℝ*) → (𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*) | |
3 | 1, 2 | sylan2 593 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*) |
4 | xlt0neg1 13194 | . . 3 ⊢ ((𝐴 +𝑒 -𝑒𝐵) ∈ ℝ* → ((𝐴 +𝑒 -𝑒𝐵) < 0 ↔ 0 < -𝑒(𝐴 +𝑒 -𝑒𝐵))) | |
5 | 3, 4 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴 +𝑒 -𝑒𝐵) < 0 ↔ 0 < -𝑒(𝐴 +𝑒 -𝑒𝐵))) |
6 | xsubge0 13236 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 𝐵 ≤ 𝐴)) | |
7 | 6 | notbid 317 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (¬ 0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ ¬ 𝐵 ≤ 𝐴)) |
8 | 0xr 11257 | . . . 4 ⊢ 0 ∈ ℝ* | |
9 | xrltnle 11277 | . . . 4 ⊢ (((𝐴 +𝑒 -𝑒𝐵) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((𝐴 +𝑒 -𝑒𝐵) < 0 ↔ ¬ 0 ≤ (𝐴 +𝑒 -𝑒𝐵))) | |
10 | 3, 8, 9 | sylancl 586 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴 +𝑒 -𝑒𝐵) < 0 ↔ ¬ 0 ≤ (𝐴 +𝑒 -𝑒𝐵))) |
11 | xrltnle 11277 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) | |
12 | 7, 10, 11 | 3bitr4d 310 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴 +𝑒 -𝑒𝐵) < 0 ↔ 𝐴 < 𝐵)) |
13 | xnegdi 13223 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ -𝑒𝐵 ∈ ℝ*) → -𝑒(𝐴 +𝑒 -𝑒𝐵) = (-𝑒𝐴 +𝑒 -𝑒-𝑒𝐵)) | |
14 | 1, 13 | sylan2 593 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → -𝑒(𝐴 +𝑒 -𝑒𝐵) = (-𝑒𝐴 +𝑒 -𝑒-𝑒𝐵)) |
15 | xnegneg 13189 | . . . . . 6 ⊢ (𝐵 ∈ ℝ* → -𝑒-𝑒𝐵 = 𝐵) | |
16 | 15 | oveq2d 7421 | . . . . 5 ⊢ (𝐵 ∈ ℝ* → (-𝑒𝐴 +𝑒 -𝑒-𝑒𝐵) = (-𝑒𝐴 +𝑒 𝐵)) |
17 | 16 | adantl 482 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (-𝑒𝐴 +𝑒 -𝑒-𝑒𝐵) = (-𝑒𝐴 +𝑒 𝐵)) |
18 | xnegcl 13188 | . . . . 5 ⊢ (𝐴 ∈ ℝ* → -𝑒𝐴 ∈ ℝ*) | |
19 | xaddcom 13215 | . . . . 5 ⊢ ((-𝑒𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (-𝑒𝐴 +𝑒 𝐵) = (𝐵 +𝑒 -𝑒𝐴)) | |
20 | 18, 19 | sylan 580 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (-𝑒𝐴 +𝑒 𝐵) = (𝐵 +𝑒 -𝑒𝐴)) |
21 | 14, 17, 20 | 3eqtrd 2776 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → -𝑒(𝐴 +𝑒 -𝑒𝐵) = (𝐵 +𝑒 -𝑒𝐴)) |
22 | 21 | breq2d 5159 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (0 < -𝑒(𝐴 +𝑒 -𝑒𝐵) ↔ 0 < (𝐵 +𝑒 -𝑒𝐴))) |
23 | 5, 12, 22 | 3bitr3d 308 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒 -𝑒𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 class class class wbr 5147 (class class class)co 7405 0cc0 11106 ℝ*cxr 11243 < clt 11244 ≤ cle 11245 -𝑒cxne 13085 +𝑒 cxad 13086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-xneg 13088 df-xadd 13089 |
This theorem is referenced by: blcld 24005 metdstri 24358 |
Copyright terms: Public domain | W3C validator |