MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xposdif Structured version   Visualization version   GIF version

Theorem xposdif 12701
Description: Extended real version of posdif 11176. (Contributed by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
xposdif ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒 -𝑒𝐴)))

Proof of Theorem xposdif
StepHypRef Expression
1 xnegcl 12652 . . . 4 (𝐵 ∈ ℝ* → -𝑒𝐵 ∈ ℝ*)
2 xaddcl 12678 . . . 4 ((𝐴 ∈ ℝ* ∧ -𝑒𝐵 ∈ ℝ*) → (𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*)
31, 2sylan2 595 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*)
4 xlt0neg1 12658 . . 3 ((𝐴 +𝑒 -𝑒𝐵) ∈ ℝ* → ((𝐴 +𝑒 -𝑒𝐵) < 0 ↔ 0 < -𝑒(𝐴 +𝑒 -𝑒𝐵)))
53, 4syl 17 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 +𝑒 -𝑒𝐵) < 0 ↔ 0 < -𝑒(𝐴 +𝑒 -𝑒𝐵)))
6 xsubge0 12700 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 𝐵𝐴))
76notbid 321 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ 0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ ¬ 𝐵𝐴))
8 0xr 10731 . . . 4 0 ∈ ℝ*
9 xrltnle 10751 . . . 4 (((𝐴 +𝑒 -𝑒𝐵) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((𝐴 +𝑒 -𝑒𝐵) < 0 ↔ ¬ 0 ≤ (𝐴 +𝑒 -𝑒𝐵)))
103, 8, 9sylancl 589 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 +𝑒 -𝑒𝐵) < 0 ↔ ¬ 0 ≤ (𝐴 +𝑒 -𝑒𝐵)))
11 xrltnle 10751 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
127, 10, 113bitr4d 314 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 +𝑒 -𝑒𝐵) < 0 ↔ 𝐴 < 𝐵))
13 xnegdi 12687 . . . . 5 ((𝐴 ∈ ℝ* ∧ -𝑒𝐵 ∈ ℝ*) → -𝑒(𝐴 +𝑒 -𝑒𝐵) = (-𝑒𝐴 +𝑒 -𝑒-𝑒𝐵))
141, 13sylan2 595 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → -𝑒(𝐴 +𝑒 -𝑒𝐵) = (-𝑒𝐴 +𝑒 -𝑒-𝑒𝐵))
15 xnegneg 12653 . . . . . 6 (𝐵 ∈ ℝ* → -𝑒-𝑒𝐵 = 𝐵)
1615oveq2d 7171 . . . . 5 (𝐵 ∈ ℝ* → (-𝑒𝐴 +𝑒 -𝑒-𝑒𝐵) = (-𝑒𝐴 +𝑒 𝐵))
1716adantl 485 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (-𝑒𝐴 +𝑒 -𝑒-𝑒𝐵) = (-𝑒𝐴 +𝑒 𝐵))
18 xnegcl 12652 . . . . 5 (𝐴 ∈ ℝ* → -𝑒𝐴 ∈ ℝ*)
19 xaddcom 12679 . . . . 5 ((-𝑒𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (-𝑒𝐴 +𝑒 𝐵) = (𝐵 +𝑒 -𝑒𝐴))
2018, 19sylan 583 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (-𝑒𝐴 +𝑒 𝐵) = (𝐵 +𝑒 -𝑒𝐴))
2114, 17, 203eqtrd 2797 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → -𝑒(𝐴 +𝑒 -𝑒𝐵) = (𝐵 +𝑒 -𝑒𝐴))
2221breq2d 5047 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (0 < -𝑒(𝐴 +𝑒 -𝑒𝐵) ↔ 0 < (𝐵 +𝑒 -𝑒𝐴)))
235, 12, 223bitr3d 312 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒 -𝑒𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111   class class class wbr 5035  (class class class)co 7155  0cc0 10580  *cxr 10717   < clt 10718  cle 10719  -𝑒cxne 12550   +𝑒 cxad 12551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-id 5433  df-po 5446  df-so 5447  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-1st 7698  df-2nd 7699  df-er 8304  df-en 8533  df-dom 8534  df-sdom 8535  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-xneg 12553  df-xadd 12554
This theorem is referenced by:  blcld  23212  metdstri  23557
  Copyright terms: Public domain W3C validator