MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xposdif Structured version   Visualization version   GIF version

Theorem xposdif 13281
Description: Extended real version of posdif 11745. (Contributed by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
xposdif ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒 -𝑒𝐴)))

Proof of Theorem xposdif
StepHypRef Expression
1 xnegcl 13232 . . . 4 (𝐵 ∈ ℝ* → -𝑒𝐵 ∈ ℝ*)
2 xaddcl 13258 . . . 4 ((𝐴 ∈ ℝ* ∧ -𝑒𝐵 ∈ ℝ*) → (𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*)
31, 2sylan2 591 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*)
4 xlt0neg1 13238 . . 3 ((𝐴 +𝑒 -𝑒𝐵) ∈ ℝ* → ((𝐴 +𝑒 -𝑒𝐵) < 0 ↔ 0 < -𝑒(𝐴 +𝑒 -𝑒𝐵)))
53, 4syl 17 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 +𝑒 -𝑒𝐵) < 0 ↔ 0 < -𝑒(𝐴 +𝑒 -𝑒𝐵)))
6 xsubge0 13280 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 𝐵𝐴))
76notbid 317 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ 0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ ¬ 𝐵𝐴))
8 0xr 11299 . . . 4 0 ∈ ℝ*
9 xrltnle 11319 . . . 4 (((𝐴 +𝑒 -𝑒𝐵) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((𝐴 +𝑒 -𝑒𝐵) < 0 ↔ ¬ 0 ≤ (𝐴 +𝑒 -𝑒𝐵)))
103, 8, 9sylancl 584 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 +𝑒 -𝑒𝐵) < 0 ↔ ¬ 0 ≤ (𝐴 +𝑒 -𝑒𝐵)))
11 xrltnle 11319 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
127, 10, 113bitr4d 310 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 +𝑒 -𝑒𝐵) < 0 ↔ 𝐴 < 𝐵))
13 xnegdi 13267 . . . . 5 ((𝐴 ∈ ℝ* ∧ -𝑒𝐵 ∈ ℝ*) → -𝑒(𝐴 +𝑒 -𝑒𝐵) = (-𝑒𝐴 +𝑒 -𝑒-𝑒𝐵))
141, 13sylan2 591 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → -𝑒(𝐴 +𝑒 -𝑒𝐵) = (-𝑒𝐴 +𝑒 -𝑒-𝑒𝐵))
15 xnegneg 13233 . . . . . 6 (𝐵 ∈ ℝ* → -𝑒-𝑒𝐵 = 𝐵)
1615oveq2d 7442 . . . . 5 (𝐵 ∈ ℝ* → (-𝑒𝐴 +𝑒 -𝑒-𝑒𝐵) = (-𝑒𝐴 +𝑒 𝐵))
1716adantl 480 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (-𝑒𝐴 +𝑒 -𝑒-𝑒𝐵) = (-𝑒𝐴 +𝑒 𝐵))
18 xnegcl 13232 . . . . 5 (𝐴 ∈ ℝ* → -𝑒𝐴 ∈ ℝ*)
19 xaddcom 13259 . . . . 5 ((-𝑒𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (-𝑒𝐴 +𝑒 𝐵) = (𝐵 +𝑒 -𝑒𝐴))
2018, 19sylan 578 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (-𝑒𝐴 +𝑒 𝐵) = (𝐵 +𝑒 -𝑒𝐴))
2114, 17, 203eqtrd 2772 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → -𝑒(𝐴 +𝑒 -𝑒𝐵) = (𝐵 +𝑒 -𝑒𝐴))
2221breq2d 5164 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (0 < -𝑒(𝐴 +𝑒 -𝑒𝐵) ↔ 0 < (𝐵 +𝑒 -𝑒𝐴)))
235, 12, 223bitr3d 308 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒 -𝑒𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098   class class class wbr 5152  (class class class)co 7426  0cc0 11146  *cxr 11285   < clt 11286  cle 11287  -𝑒cxne 13129   +𝑒 cxad 13130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-po 5594  df-so 5595  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-1st 7999  df-2nd 8000  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-xneg 13132  df-xadd 13133
This theorem is referenced by:  blcld  24434  metdstri  24787
  Copyright terms: Public domain W3C validator