Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xposdif | Structured version Visualization version GIF version |
Description: Extended real version of posdif 11176. (Contributed by Mario Carneiro, 24-Aug-2015.) |
Ref | Expression |
---|---|
xposdif | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒 -𝑒𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xnegcl 12652 | . . . 4 ⊢ (𝐵 ∈ ℝ* → -𝑒𝐵 ∈ ℝ*) | |
2 | xaddcl 12678 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ -𝑒𝐵 ∈ ℝ*) → (𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*) | |
3 | 1, 2 | sylan2 595 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*) |
4 | xlt0neg1 12658 | . . 3 ⊢ ((𝐴 +𝑒 -𝑒𝐵) ∈ ℝ* → ((𝐴 +𝑒 -𝑒𝐵) < 0 ↔ 0 < -𝑒(𝐴 +𝑒 -𝑒𝐵))) | |
5 | 3, 4 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴 +𝑒 -𝑒𝐵) < 0 ↔ 0 < -𝑒(𝐴 +𝑒 -𝑒𝐵))) |
6 | xsubge0 12700 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 𝐵 ≤ 𝐴)) | |
7 | 6 | notbid 321 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (¬ 0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ ¬ 𝐵 ≤ 𝐴)) |
8 | 0xr 10731 | . . . 4 ⊢ 0 ∈ ℝ* | |
9 | xrltnle 10751 | . . . 4 ⊢ (((𝐴 +𝑒 -𝑒𝐵) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((𝐴 +𝑒 -𝑒𝐵) < 0 ↔ ¬ 0 ≤ (𝐴 +𝑒 -𝑒𝐵))) | |
10 | 3, 8, 9 | sylancl 589 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴 +𝑒 -𝑒𝐵) < 0 ↔ ¬ 0 ≤ (𝐴 +𝑒 -𝑒𝐵))) |
11 | xrltnle 10751 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) | |
12 | 7, 10, 11 | 3bitr4d 314 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴 +𝑒 -𝑒𝐵) < 0 ↔ 𝐴 < 𝐵)) |
13 | xnegdi 12687 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ -𝑒𝐵 ∈ ℝ*) → -𝑒(𝐴 +𝑒 -𝑒𝐵) = (-𝑒𝐴 +𝑒 -𝑒-𝑒𝐵)) | |
14 | 1, 13 | sylan2 595 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → -𝑒(𝐴 +𝑒 -𝑒𝐵) = (-𝑒𝐴 +𝑒 -𝑒-𝑒𝐵)) |
15 | xnegneg 12653 | . . . . . 6 ⊢ (𝐵 ∈ ℝ* → -𝑒-𝑒𝐵 = 𝐵) | |
16 | 15 | oveq2d 7171 | . . . . 5 ⊢ (𝐵 ∈ ℝ* → (-𝑒𝐴 +𝑒 -𝑒-𝑒𝐵) = (-𝑒𝐴 +𝑒 𝐵)) |
17 | 16 | adantl 485 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (-𝑒𝐴 +𝑒 -𝑒-𝑒𝐵) = (-𝑒𝐴 +𝑒 𝐵)) |
18 | xnegcl 12652 | . . . . 5 ⊢ (𝐴 ∈ ℝ* → -𝑒𝐴 ∈ ℝ*) | |
19 | xaddcom 12679 | . . . . 5 ⊢ ((-𝑒𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (-𝑒𝐴 +𝑒 𝐵) = (𝐵 +𝑒 -𝑒𝐴)) | |
20 | 18, 19 | sylan 583 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (-𝑒𝐴 +𝑒 𝐵) = (𝐵 +𝑒 -𝑒𝐴)) |
21 | 14, 17, 20 | 3eqtrd 2797 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → -𝑒(𝐴 +𝑒 -𝑒𝐵) = (𝐵 +𝑒 -𝑒𝐴)) |
22 | 21 | breq2d 5047 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (0 < -𝑒(𝐴 +𝑒 -𝑒𝐵) ↔ 0 < (𝐵 +𝑒 -𝑒𝐴))) |
23 | 5, 12, 22 | 3bitr3d 312 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒 -𝑒𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 class class class wbr 5035 (class class class)co 7155 0cc0 10580 ℝ*cxr 10717 < clt 10718 ≤ cle 10719 -𝑒cxne 12550 +𝑒 cxad 12551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-id 5433 df-po 5446 df-so 5447 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-1st 7698 df-2nd 7699 df-er 8304 df-en 8533 df-dom 8534 df-sdom 8535 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-xneg 12553 df-xadd 12554 |
This theorem is referenced by: blcld 23212 metdstri 23557 |
Copyright terms: Public domain | W3C validator |