| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xaddcld | Structured version Visualization version GIF version | ||
| Description: The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| xnegcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| xaddcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| Ref | Expression |
|---|---|
| xaddcld | ⊢ (𝜑 → (𝐴 +𝑒 𝐵) ∈ ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xnegcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 2 | xaddcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 3 | xaddcl 13199 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 +𝑒 𝐵) ∈ ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 (class class class)co 7387 ℝ*cxr 11207 +𝑒 cxad 13070 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-1cn 11126 ax-addrcl 11129 ax-rnegex 11139 ax-cnre 11141 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-pnf 11210 df-mnf 11211 df-xr 11212 df-xadd 13073 |
| This theorem is referenced by: xadd4d 13263 imasdsf1olem 24261 bldisj 24286 xblss2ps 24289 xblss2 24290 blcld 24393 comet 24401 stdbdxmet 24403 metdstri 24740 metdscnlem 24744 iscau3 25178 xlt2addrd 32682 xrge0addcld 32685 xrge0subcld 32686 xrofsup 32690 xrsmulgzz 32947 xrge0adddir 32959 xrge0adddi 32960 esumle 34048 esumlef 34052 omssubadd 34291 inelcarsg 34302 carsgclctunlem2 34310 carsgclctunlem3 34311 carsgclctun 34312 xle2addd 45332 infrpge 45347 xrlexaddrp 45348 infleinflem1 45366 infleinflem2 45367 limsupgtlem 45775 ismbl3 45984 ismbl4 45991 sge0prle 46399 sge0split 46407 sge0iunmptlemre 46413 sge0xaddlem1 46431 omeunle 46514 carageniuncl 46521 ovnsubaddlem1 46568 hspmbl 46627 ovolval5lem1 46650 |
| Copyright terms: Public domain | W3C validator |