![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xaddcld | Structured version Visualization version GIF version |
Description: The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
xnegcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xaddcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
Ref | Expression |
---|---|
xaddcld | ⊢ (𝜑 → (𝐴 +𝑒 𝐵) ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xnegcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
2 | xaddcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
3 | xaddcl 13277 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 +𝑒 𝐵) ∈ ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 (class class class)co 7430 ℝ*cxr 11291 +𝑒 cxad 13149 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-1cn 11210 ax-addrcl 11213 ax-rnegex 11223 ax-cnre 11225 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-1st 8012 df-2nd 8013 df-pnf 11294 df-mnf 11295 df-xr 11296 df-xadd 13152 |
This theorem is referenced by: xadd4d 13341 imasdsf1olem 24398 bldisj 24423 xblss2ps 24426 xblss2 24427 blcld 24533 comet 24541 stdbdxmet 24543 metdstri 24886 metdscnlem 24890 iscau3 25325 xlt2addrd 32768 xrge0addcld 32772 xrge0subcld 32773 xrofsup 32777 xrsmulgzz 32993 xrge0adddir 33005 xrge0adddi 33006 esumle 34038 esumlef 34042 omssubadd 34281 inelcarsg 34292 carsgclctunlem2 34300 carsgclctunlem3 34301 carsgclctun 34302 xle2addd 45285 infrpge 45300 xrlexaddrp 45301 infleinflem1 45319 infleinflem2 45320 limsupgtlem 45732 ismbl3 45941 ismbl4 45948 sge0prle 46356 sge0split 46364 sge0iunmptlemre 46370 sge0xaddlem1 46388 omeunle 46471 carageniuncl 46478 ovnsubaddlem1 46525 hspmbl 46584 ovolval5lem1 46607 |
Copyright terms: Public domain | W3C validator |