| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xaddcld | Structured version Visualization version GIF version | ||
| Description: The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| xnegcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| xaddcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| Ref | Expression |
|---|---|
| xaddcld | ⊢ (𝜑 → (𝐴 +𝑒 𝐵) ∈ ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xnegcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 2 | xaddcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 3 | xaddcl 13253 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 +𝑒 𝐵) ∈ ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 (class class class)co 7403 ℝ*cxr 11266 +𝑒 cxad 13124 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-1cn 11185 ax-addrcl 11188 ax-rnegex 11198 ax-cnre 11200 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-1st 7986 df-2nd 7987 df-pnf 11269 df-mnf 11270 df-xr 11271 df-xadd 13127 |
| This theorem is referenced by: xadd4d 13317 imasdsf1olem 24310 bldisj 24335 xblss2ps 24338 xblss2 24339 blcld 24442 comet 24450 stdbdxmet 24452 metdstri 24789 metdscnlem 24793 iscau3 25228 xlt2addrd 32682 xrge0addcld 32685 xrge0subcld 32686 xrofsup 32690 xrsmulgzz 32947 xrge0adddir 32959 xrge0adddi 32960 esumle 34035 esumlef 34039 omssubadd 34278 inelcarsg 34289 carsgclctunlem2 34297 carsgclctunlem3 34298 carsgclctun 34299 xle2addd 45311 infrpge 45326 xrlexaddrp 45327 infleinflem1 45345 infleinflem2 45346 limsupgtlem 45754 ismbl3 45963 ismbl4 45970 sge0prle 46378 sge0split 46386 sge0iunmptlemre 46392 sge0xaddlem1 46410 omeunle 46493 carageniuncl 46500 ovnsubaddlem1 46547 hspmbl 46606 ovolval5lem1 46629 |
| Copyright terms: Public domain | W3C validator |