![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xaddcld | Structured version Visualization version GIF version |
Description: The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
xnegcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xaddcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
Ref | Expression |
---|---|
xaddcld | ⊢ (𝜑 → (𝐴 +𝑒 𝐵) ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xnegcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
2 | xaddcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
3 | xaddcl 13301 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → (𝐴 +𝑒 𝐵) ∈ ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 (class class class)co 7448 ℝ*cxr 11323 +𝑒 cxad 13173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-1cn 11242 ax-addrcl 11245 ax-rnegex 11255 ax-cnre 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-pnf 11326 df-mnf 11327 df-xr 11328 df-xadd 13176 |
This theorem is referenced by: xadd4d 13365 imasdsf1olem 24404 bldisj 24429 xblss2ps 24432 xblss2 24433 blcld 24539 comet 24547 stdbdxmet 24549 metdstri 24892 metdscnlem 24896 iscau3 25331 xlt2addrd 32765 xrge0addcld 32769 xrge0subcld 32770 xrofsup 32774 xrsmulgzz 32992 xrge0adddir 33004 xrge0adddi 33005 esumle 34022 esumlef 34026 omssubadd 34265 inelcarsg 34276 carsgclctunlem2 34284 carsgclctunlem3 34285 carsgclctun 34286 xle2addd 45251 infrpge 45266 xrlexaddrp 45267 infleinflem1 45285 infleinflem2 45286 limsupgtlem 45698 ismbl3 45907 ismbl4 45914 sge0prle 46322 sge0split 46330 sge0iunmptlemre 46336 sge0xaddlem1 46354 omeunle 46437 carageniuncl 46444 ovnsubaddlem1 46491 hspmbl 46550 ovolval5lem1 46573 |
Copyright terms: Public domain | W3C validator |