| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xaddcld | Structured version Visualization version GIF version | ||
| Description: The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| xnegcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| xaddcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| Ref | Expression |
|---|---|
| xaddcld | ⊢ (𝜑 → (𝐴 +𝑒 𝐵) ∈ ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xnegcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 2 | xaddcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 3 | xaddcl 13138 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 +𝑒 𝐵) ∈ ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 (class class class)co 7346 ℝ*cxr 11145 +𝑒 cxad 13009 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-1cn 11064 ax-addrcl 11067 ax-rnegex 11077 ax-cnre 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-pnf 11148 df-mnf 11149 df-xr 11150 df-xadd 13012 |
| This theorem is referenced by: xadd4d 13202 imasdsf1olem 24288 bldisj 24313 xblss2ps 24316 xblss2 24317 blcld 24420 comet 24428 stdbdxmet 24430 metdstri 24767 metdscnlem 24771 iscau3 25205 xlt2addrd 32742 xrge0addcld 32745 xrge0subcld 32746 xrofsup 32750 xrsmulgzz 32990 xrge0adddir 32999 xrge0adddi 33000 esumle 34071 esumlef 34075 omssubadd 34313 inelcarsg 34324 carsgclctunlem2 34332 carsgclctunlem3 34333 carsgclctun 34334 xle2addd 45434 infrpge 45449 xrlexaddrp 45450 infleinflem1 45467 infleinflem2 45468 limsupgtlem 45874 ismbl3 46083 ismbl4 46090 sge0prle 46498 sge0split 46506 sge0iunmptlemre 46512 sge0xaddlem1 46530 omeunle 46613 carageniuncl 46620 ovnsubaddlem1 46667 hspmbl 46726 ovolval5lem1 46749 |
| Copyright terms: Public domain | W3C validator |