MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xaddcld Structured version   Visualization version   GIF version

Theorem xaddcld 13363
Description: The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
xnegcld.1 (𝜑𝐴 ∈ ℝ*)
xaddcld.2 (𝜑𝐵 ∈ ℝ*)
Assertion
Ref Expression
xaddcld (𝜑 → (𝐴 +𝑒 𝐵) ∈ ℝ*)

Proof of Theorem xaddcld
StepHypRef Expression
1 xnegcld.1 . 2 (𝜑𝐴 ∈ ℝ*)
2 xaddcld.2 . 2 (𝜑𝐵 ∈ ℝ*)
3 xaddcl 13301 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
41, 2, 3syl2anc 583 1 (𝜑 → (𝐴 +𝑒 𝐵) ∈ ℝ*)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  (class class class)co 7448  *cxr 11323   +𝑒 cxad 13173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-1cn 11242  ax-addrcl 11245  ax-rnegex 11255  ax-cnre 11257
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-pnf 11326  df-mnf 11327  df-xr 11328  df-xadd 13176
This theorem is referenced by:  xadd4d  13365  imasdsf1olem  24404  bldisj  24429  xblss2ps  24432  xblss2  24433  blcld  24539  comet  24547  stdbdxmet  24549  metdstri  24892  metdscnlem  24896  iscau3  25331  xlt2addrd  32765  xrge0addcld  32769  xrge0subcld  32770  xrofsup  32774  xrsmulgzz  32992  xrge0adddir  33004  xrge0adddi  33005  esumle  34022  esumlef  34026  omssubadd  34265  inelcarsg  34276  carsgclctunlem2  34284  carsgclctunlem3  34285  carsgclctun  34286  xle2addd  45251  infrpge  45266  xrlexaddrp  45267  infleinflem1  45285  infleinflem2  45286  limsupgtlem  45698  ismbl3  45907  ismbl4  45914  sge0prle  46322  sge0split  46330  sge0iunmptlemre  46336  sge0xaddlem1  46354  omeunle  46437  carageniuncl  46444  ovnsubaddlem1  46491  hspmbl  46550  ovolval5lem1  46573
  Copyright terms: Public domain W3C validator