Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xaddcld | Structured version Visualization version GIF version |
Description: The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
xnegcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xaddcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
Ref | Expression |
---|---|
xaddcld | ⊢ (𝜑 → (𝐴 +𝑒 𝐵) ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xnegcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
2 | xaddcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
3 | xaddcl 12982 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 +𝑒 𝐵) ∈ ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 (class class class)co 7284 ℝ*cxr 11017 +𝑒 cxad 12855 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-cnex 10936 ax-1cn 10938 ax-addrcl 10941 ax-rnegex 10951 ax-cnre 10953 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-fv 6445 df-ov 7287 df-oprab 7288 df-mpo 7289 df-1st 7840 df-2nd 7841 df-pnf 11020 df-mnf 11021 df-xr 11022 df-xadd 12858 |
This theorem is referenced by: xadd4d 13046 imasdsf1olem 23535 bldisj 23560 xblss2ps 23563 xblss2 23564 blcld 23670 comet 23678 stdbdxmet 23680 metdstri 24023 metdscnlem 24027 iscau3 24451 xlt2addrd 31090 xrge0addcld 31094 xrge0subcld 31095 xrofsup 31099 xrsmulgzz 31296 xrge0adddir 31310 xrge0adddi 31311 esumle 32035 esumlef 32039 omssubadd 32276 inelcarsg 32287 carsgclctunlem2 32295 carsgclctunlem3 32296 carsgclctun 32297 xle2addd 42882 infrpge 42897 xrlexaddrp 42898 infleinflem1 42916 infleinflem2 42917 limsupgtlem 43325 ismbl3 43534 ismbl4 43541 sge0prle 43946 sge0split 43954 sge0iunmptlemre 43960 sge0xaddlem1 43978 omeunle 44061 carageniuncl 44068 ovnsubaddlem1 44115 hspmbl 44174 ovolval5lem1 44197 |
Copyright terms: Public domain | W3C validator |