| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xaddcld | Structured version Visualization version GIF version | ||
| Description: The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| xnegcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| xaddcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| Ref | Expression |
|---|---|
| xaddcld | ⊢ (𝜑 → (𝐴 +𝑒 𝐵) ∈ ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xnegcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 2 | xaddcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 3 | xaddcl 13177 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 +𝑒 𝐵) ∈ ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 (class class class)co 7369 ℝ*cxr 11185 +𝑒 cxad 13048 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-1cn 11104 ax-addrcl 11107 ax-rnegex 11117 ax-cnre 11119 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-pnf 11188 df-mnf 11189 df-xr 11190 df-xadd 13051 |
| This theorem is referenced by: xadd4d 13241 imasdsf1olem 24295 bldisj 24320 xblss2ps 24323 xblss2 24324 blcld 24427 comet 24435 stdbdxmet 24437 metdstri 24774 metdscnlem 24778 iscau3 25212 xlt2addrd 32733 xrge0addcld 32736 xrge0subcld 32737 xrofsup 32741 xrsmulgzz 32994 xrge0adddir 33003 xrge0adddi 33004 esumle 34042 esumlef 34046 omssubadd 34285 inelcarsg 34296 carsgclctunlem2 34304 carsgclctunlem3 34305 carsgclctun 34306 xle2addd 45326 infrpge 45341 xrlexaddrp 45342 infleinflem1 45360 infleinflem2 45361 limsupgtlem 45769 ismbl3 45978 ismbl4 45985 sge0prle 46393 sge0split 46401 sge0iunmptlemre 46407 sge0xaddlem1 46425 omeunle 46508 carageniuncl 46515 ovnsubaddlem1 46562 hspmbl 46621 ovolval5lem1 46644 |
| Copyright terms: Public domain | W3C validator |