MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xltadd1 Structured version   Visualization version   GIF version

Theorem xltadd1 13238
Description: Extended real version of ltadd1 11682. (Contributed by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
xltadd1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶)))

Proof of Theorem xltadd1
StepHypRef Expression
1 xleadd1 13237 . . . 4 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*𝐶 ∈ ℝ) → (𝐵𝐴 ↔ (𝐵 +𝑒 𝐶) ≤ (𝐴 +𝑒 𝐶)))
213com12 1120 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → (𝐵𝐴 ↔ (𝐵 +𝑒 𝐶) ≤ (𝐴 +𝑒 𝐶)))
32notbid 318 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → (¬ 𝐵𝐴 ↔ ¬ (𝐵 +𝑒 𝐶) ≤ (𝐴 +𝑒 𝐶)))
4 xrltnle 11282 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
543adant3 1129 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
6 simp1 1133 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → 𝐴 ∈ ℝ*)
7 rexr 11261 . . . . 5 (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*)
873ad2ant3 1132 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → 𝐶 ∈ ℝ*)
9 xaddcl 13221 . . . 4 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 +𝑒 𝐶) ∈ ℝ*)
106, 8, 9syl2anc 583 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → (𝐴 +𝑒 𝐶) ∈ ℝ*)
11 simp2 1134 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → 𝐵 ∈ ℝ*)
12 xaddcl 13221 . . . 4 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
1311, 8, 12syl2anc 583 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
14 xrltnle 11282 . . 3 (((𝐴 +𝑒 𝐶) ∈ ℝ* ∧ (𝐵 +𝑒 𝐶) ∈ ℝ*) → ((𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶) ↔ ¬ (𝐵 +𝑒 𝐶) ≤ (𝐴 +𝑒 𝐶)))
1510, 13, 14syl2anc 583 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → ((𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶) ↔ ¬ (𝐵 +𝑒 𝐶) ≤ (𝐴 +𝑒 𝐶)))
163, 5, 153bitr4d 311 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  w3a 1084  wcel 2098   class class class wbr 5141  (class class class)co 7404  cr 11108  *cxr 11248   < clt 11249  cle 11250   +𝑒 cxad 13093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-1st 7971  df-2nd 7972  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-xneg 13095  df-xadd 13096
This theorem is referenced by:  xltadd2  13239  xlt2add  13242  hashunsnggt  14357
  Copyright terms: Public domain W3C validator