![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xltadd1 | Structured version Visualization version GIF version |
Description: Extended real version of ltadd1 11630. (Contributed by Mario Carneiro, 23-Aug-2015.) |
Ref | Expression |
---|---|
xltadd1 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xleadd1 13183 | . . . 4 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → (𝐵 ≤ 𝐴 ↔ (𝐵 +𝑒 𝐶) ≤ (𝐴 +𝑒 𝐶))) | |
2 | 1 | 3com12 1124 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → (𝐵 ≤ 𝐴 ↔ (𝐵 +𝑒 𝐶) ≤ (𝐴 +𝑒 𝐶))) |
3 | 2 | notbid 318 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → (¬ 𝐵 ≤ 𝐴 ↔ ¬ (𝐵 +𝑒 𝐶) ≤ (𝐴 +𝑒 𝐶))) |
4 | xrltnle 11230 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) | |
5 | 4 | 3adant3 1133 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
6 | simp1 1137 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℝ*) | |
7 | rexr 11209 | . . . . 5 ⊢ (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*) | |
8 | 7 | 3ad2ant3 1136 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ*) |
9 | xaddcl 13167 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 +𝑒 𝐶) ∈ ℝ*) | |
10 | 6, 8, 9 | syl2anc 585 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → (𝐴 +𝑒 𝐶) ∈ ℝ*) |
11 | simp2 1138 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ*) | |
12 | xaddcl 13167 | . . . 4 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵 +𝑒 𝐶) ∈ ℝ*) | |
13 | 11, 8, 12 | syl2anc 585 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → (𝐵 +𝑒 𝐶) ∈ ℝ*) |
14 | xrltnle 11230 | . . 3 ⊢ (((𝐴 +𝑒 𝐶) ∈ ℝ* ∧ (𝐵 +𝑒 𝐶) ∈ ℝ*) → ((𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶) ↔ ¬ (𝐵 +𝑒 𝐶) ≤ (𝐴 +𝑒 𝐶))) | |
15 | 10, 13, 14 | syl2anc 585 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → ((𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶) ↔ ¬ (𝐵 +𝑒 𝐶) ≤ (𝐴 +𝑒 𝐶))) |
16 | 3, 5, 15 | 3bitr4d 311 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ w3a 1088 ∈ wcel 2107 class class class wbr 5109 (class class class)co 7361 ℝcr 11058 ℝ*cxr 11196 < clt 11197 ≤ cle 11198 +𝑒 cxad 13039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-cnex 11115 ax-resscn 11116 ax-1cn 11117 ax-icn 11118 ax-addcl 11119 ax-addrcl 11120 ax-mulcl 11121 ax-mulrcl 11122 ax-mulcom 11123 ax-addass 11124 ax-mulass 11125 ax-distr 11126 ax-i2m1 11127 ax-1ne0 11128 ax-1rid 11129 ax-rnegex 11130 ax-rrecex 11131 ax-cnre 11132 ax-pre-lttri 11133 ax-pre-lttrn 11134 ax-pre-ltadd 11135 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-id 5535 df-po 5549 df-so 5550 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7317 df-ov 7364 df-oprab 7365 df-mpo 7366 df-1st 7925 df-2nd 7926 df-er 8654 df-en 8890 df-dom 8891 df-sdom 8892 df-pnf 11199 df-mnf 11200 df-xr 11201 df-ltxr 11202 df-le 11203 df-sub 11395 df-neg 11396 df-xneg 13041 df-xadd 13042 |
This theorem is referenced by: xltadd2 13185 xlt2add 13188 hashunsnggt 14303 |
Copyright terms: Public domain | W3C validator |