![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xleadd1 | Structured version Visualization version GIF version |
Description: Weakened version of xleadd1a 13230 under which the reverse implication is true. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xleadd1 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr 11258 | . . 3 ⊢ (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*) | |
2 | xleadd1a 13230 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶)) | |
3 | 2 | ex 412 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 ≤ 𝐵 → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))) |
4 | 1, 3 | syl3an3 1162 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐵 → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))) |
5 | simp1 1133 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℝ*) | |
6 | 1 | 3ad2ant3 1132 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ*) |
7 | xaddcl 13216 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 +𝑒 𝐶) ∈ ℝ*) | |
8 | 5, 6, 7 | syl2anc 583 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → (𝐴 +𝑒 𝐶) ∈ ℝ*) |
9 | simp2 1134 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ*) | |
10 | xaddcl 13216 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵 +𝑒 𝐶) ∈ ℝ*) | |
11 | 9, 6, 10 | syl2anc 583 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → (𝐵 +𝑒 𝐶) ∈ ℝ*) |
12 | xnegcl 13190 | . . . . 5 ⊢ (𝐶 ∈ ℝ* → -𝑒𝐶 ∈ ℝ*) | |
13 | 6, 12 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → -𝑒𝐶 ∈ ℝ*) |
14 | xleadd1a 13230 | . . . . 5 ⊢ ((((𝐴 +𝑒 𝐶) ∈ ℝ* ∧ (𝐵 +𝑒 𝐶) ∈ ℝ* ∧ -𝑒𝐶 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶)) → ((𝐴 +𝑒 𝐶) +𝑒 -𝑒𝐶) ≤ ((𝐵 +𝑒 𝐶) +𝑒 -𝑒𝐶)) | |
15 | 14 | ex 412 | . . . 4 ⊢ (((𝐴 +𝑒 𝐶) ∈ ℝ* ∧ (𝐵 +𝑒 𝐶) ∈ ℝ* ∧ -𝑒𝐶 ∈ ℝ*) → ((𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶) → ((𝐴 +𝑒 𝐶) +𝑒 -𝑒𝐶) ≤ ((𝐵 +𝑒 𝐶) +𝑒 -𝑒𝐶))) |
16 | 8, 11, 13, 15 | syl3anc 1368 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → ((𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶) → ((𝐴 +𝑒 𝐶) +𝑒 -𝑒𝐶) ≤ ((𝐵 +𝑒 𝐶) +𝑒 -𝑒𝐶))) |
17 | xpncan 13228 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → ((𝐴 +𝑒 𝐶) +𝑒 -𝑒𝐶) = 𝐴) | |
18 | 17 | 3adant2 1128 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → ((𝐴 +𝑒 𝐶) +𝑒 -𝑒𝐶) = 𝐴) |
19 | xpncan 13228 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → ((𝐵 +𝑒 𝐶) +𝑒 -𝑒𝐶) = 𝐵) | |
20 | 19 | 3adant1 1127 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → ((𝐵 +𝑒 𝐶) +𝑒 -𝑒𝐶) = 𝐵) |
21 | 18, 20 | breq12d 5152 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → (((𝐴 +𝑒 𝐶) +𝑒 -𝑒𝐶) ≤ ((𝐵 +𝑒 𝐶) +𝑒 -𝑒𝐶) ↔ 𝐴 ≤ 𝐵)) |
22 | 16, 21 | sylibd 238 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → ((𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶) → 𝐴 ≤ 𝐵)) |
23 | 4, 22 | impbid 211 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 class class class wbr 5139 (class class class)co 7402 ℝcr 11106 ℝ*cxr 11245 ≤ cle 11247 -𝑒cxne 13087 +𝑒 cxad 13088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-po 5579 df-so 5580 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-1st 7969 df-2nd 7970 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-pnf 11248 df-mnf 11249 df-xr 11250 df-ltxr 11251 df-le 11252 df-sub 11444 df-neg 11445 df-xneg 13090 df-xadd 13091 |
This theorem is referenced by: xltadd1 13233 xsubge0 13238 xlesubadd 13240 |
Copyright terms: Public domain | W3C validator |