MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xleadd1 Structured version   Visualization version   GIF version

Theorem xleadd1 13183
Description: Weakened version of xleadd1a 13181 under which the reverse implication is true. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xleadd1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → (𝐴𝐵 ↔ (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶)))

Proof of Theorem xleadd1
StepHypRef Expression
1 rexr 11209 . . 3 (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*)
2 xleadd1a 13181 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
32ex 414 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴𝐵 → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶)))
41, 3syl3an3 1166 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → (𝐴𝐵 → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶)))
5 simp1 1137 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → 𝐴 ∈ ℝ*)
613ad2ant3 1136 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → 𝐶 ∈ ℝ*)
7 xaddcl 13167 . . . . 5 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 +𝑒 𝐶) ∈ ℝ*)
85, 6, 7syl2anc 585 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → (𝐴 +𝑒 𝐶) ∈ ℝ*)
9 simp2 1138 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → 𝐵 ∈ ℝ*)
10 xaddcl 13167 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
119, 6, 10syl2anc 585 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
12 xnegcl 13141 . . . . 5 (𝐶 ∈ ℝ* → -𝑒𝐶 ∈ ℝ*)
136, 12syl 17 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → -𝑒𝐶 ∈ ℝ*)
14 xleadd1a 13181 . . . . 5 ((((𝐴 +𝑒 𝐶) ∈ ℝ* ∧ (𝐵 +𝑒 𝐶) ∈ ℝ* ∧ -𝑒𝐶 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶)) → ((𝐴 +𝑒 𝐶) +𝑒 -𝑒𝐶) ≤ ((𝐵 +𝑒 𝐶) +𝑒 -𝑒𝐶))
1514ex 414 . . . 4 (((𝐴 +𝑒 𝐶) ∈ ℝ* ∧ (𝐵 +𝑒 𝐶) ∈ ℝ* ∧ -𝑒𝐶 ∈ ℝ*) → ((𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶) → ((𝐴 +𝑒 𝐶) +𝑒 -𝑒𝐶) ≤ ((𝐵 +𝑒 𝐶) +𝑒 -𝑒𝐶)))
168, 11, 13, 15syl3anc 1372 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → ((𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶) → ((𝐴 +𝑒 𝐶) +𝑒 -𝑒𝐶) ≤ ((𝐵 +𝑒 𝐶) +𝑒 -𝑒𝐶)))
17 xpncan 13179 . . . . 5 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ) → ((𝐴 +𝑒 𝐶) +𝑒 -𝑒𝐶) = 𝐴)
18173adant2 1132 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → ((𝐴 +𝑒 𝐶) +𝑒 -𝑒𝐶) = 𝐴)
19 xpncan 13179 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ) → ((𝐵 +𝑒 𝐶) +𝑒 -𝑒𝐶) = 𝐵)
20193adant1 1131 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → ((𝐵 +𝑒 𝐶) +𝑒 -𝑒𝐶) = 𝐵)
2118, 20breq12d 5122 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → (((𝐴 +𝑒 𝐶) +𝑒 -𝑒𝐶) ≤ ((𝐵 +𝑒 𝐶) +𝑒 -𝑒𝐶) ↔ 𝐴𝐵))
2216, 21sylibd 238 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → ((𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶) → 𝐴𝐵))
234, 22impbid 211 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → (𝐴𝐵 ↔ (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1088   = wceq 1542  wcel 2107   class class class wbr 5109  (class class class)co 7361  cr 11058  *cxr 11196  cle 11198  -𝑒cxne 13038   +𝑒 cxad 13039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-po 5549  df-so 5550  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-1st 7925  df-2nd 7926  df-er 8654  df-en 8890  df-dom 8891  df-sdom 8892  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-xneg 13041  df-xadd 13042
This theorem is referenced by:  xltadd1  13184  xsubge0  13189  xlesubadd  13191
  Copyright terms: Public domain W3C validator