MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xleadd1 Structured version   Visualization version   GIF version

Theorem xleadd1 13232
Description: Weakened version of xleadd1a 13230 under which the reverse implication is true. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xleadd1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → (𝐴𝐵 ↔ (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶)))

Proof of Theorem xleadd1
StepHypRef Expression
1 rexr 11258 . . 3 (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*)
2 xleadd1a 13230 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
32ex 412 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴𝐵 → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶)))
41, 3syl3an3 1162 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → (𝐴𝐵 → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶)))
5 simp1 1133 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → 𝐴 ∈ ℝ*)
613ad2ant3 1132 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → 𝐶 ∈ ℝ*)
7 xaddcl 13216 . . . . 5 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 +𝑒 𝐶) ∈ ℝ*)
85, 6, 7syl2anc 583 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → (𝐴 +𝑒 𝐶) ∈ ℝ*)
9 simp2 1134 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → 𝐵 ∈ ℝ*)
10 xaddcl 13216 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
119, 6, 10syl2anc 583 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
12 xnegcl 13190 . . . . 5 (𝐶 ∈ ℝ* → -𝑒𝐶 ∈ ℝ*)
136, 12syl 17 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → -𝑒𝐶 ∈ ℝ*)
14 xleadd1a 13230 . . . . 5 ((((𝐴 +𝑒 𝐶) ∈ ℝ* ∧ (𝐵 +𝑒 𝐶) ∈ ℝ* ∧ -𝑒𝐶 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶)) → ((𝐴 +𝑒 𝐶) +𝑒 -𝑒𝐶) ≤ ((𝐵 +𝑒 𝐶) +𝑒 -𝑒𝐶))
1514ex 412 . . . 4 (((𝐴 +𝑒 𝐶) ∈ ℝ* ∧ (𝐵 +𝑒 𝐶) ∈ ℝ* ∧ -𝑒𝐶 ∈ ℝ*) → ((𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶) → ((𝐴 +𝑒 𝐶) +𝑒 -𝑒𝐶) ≤ ((𝐵 +𝑒 𝐶) +𝑒 -𝑒𝐶)))
168, 11, 13, 15syl3anc 1368 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → ((𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶) → ((𝐴 +𝑒 𝐶) +𝑒 -𝑒𝐶) ≤ ((𝐵 +𝑒 𝐶) +𝑒 -𝑒𝐶)))
17 xpncan 13228 . . . . 5 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ) → ((𝐴 +𝑒 𝐶) +𝑒 -𝑒𝐶) = 𝐴)
18173adant2 1128 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → ((𝐴 +𝑒 𝐶) +𝑒 -𝑒𝐶) = 𝐴)
19 xpncan 13228 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ) → ((𝐵 +𝑒 𝐶) +𝑒 -𝑒𝐶) = 𝐵)
20193adant1 1127 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → ((𝐵 +𝑒 𝐶) +𝑒 -𝑒𝐶) = 𝐵)
2118, 20breq12d 5152 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → (((𝐴 +𝑒 𝐶) +𝑒 -𝑒𝐶) ≤ ((𝐵 +𝑒 𝐶) +𝑒 -𝑒𝐶) ↔ 𝐴𝐵))
2216, 21sylibd 238 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → ((𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶) → 𝐴𝐵))
234, 22impbid 211 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → (𝐴𝐵 ↔ (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1084   = wceq 1533  wcel 2098   class class class wbr 5139  (class class class)co 7402  cr 11106  *cxr 11245  cle 11247  -𝑒cxne 13087   +𝑒 cxad 13088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-po 5579  df-so 5580  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-1st 7969  df-2nd 7970  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-xneg 13090  df-xadd 13091
This theorem is referenced by:  xltadd1  13233  xsubge0  13238  xlesubadd  13240
  Copyright terms: Public domain W3C validator