Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0addgt0 Structured version   Visualization version   GIF version

Theorem xrge0addgt0 33004
Description: The sum of nonnegative and positive numbers is positive. See addgtge0 11748. (Contributed by Thierry Arnoux, 6-Jul-2017.)
Assertion
Ref Expression
xrge0addgt0 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → 0 < (𝐴 +𝑒 𝐵))

Proof of Theorem xrge0addgt0
StepHypRef Expression
1 0xr 11305 . . . 4 0 ∈ ℝ*
2 xaddrid 13279 . . . 4 (0 ∈ ℝ* → (0 +𝑒 0) = 0)
31, 2ax-mp 5 . . 3 (0 +𝑒 0) = 0
4 simplr 769 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 0 < 𝐴)
5 simpr 484 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 0 < 𝐵)
61a1i 11 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 0 ∈ ℝ*)
7 iccssxr 13466 . . . . . 6 (0[,]+∞) ⊆ ℝ*
8 simplll 775 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 𝐴 ∈ (0[,]+∞))
97, 8sselid 3992 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 𝐴 ∈ ℝ*)
10 simpllr 776 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 𝐵 ∈ (0[,]+∞))
117, 10sselid 3992 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 𝐵 ∈ ℝ*)
12 xlt2add 13298 . . . . 5 (((0 ∈ ℝ* ∧ 0 ∈ ℝ*) ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*)) → ((0 < 𝐴 ∧ 0 < 𝐵) → (0 +𝑒 0) < (𝐴 +𝑒 𝐵)))
136, 6, 9, 11, 12syl22anc 839 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → ((0 < 𝐴 ∧ 0 < 𝐵) → (0 +𝑒 0) < (𝐴 +𝑒 𝐵)))
144, 5, 13mp2and 699 . . 3 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → (0 +𝑒 0) < (𝐴 +𝑒 𝐵))
153, 14eqbrtrrid 5183 . 2 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 0 < (𝐴 +𝑒 𝐵))
16 simplr 769 . . 3 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → 0 < 𝐴)
17 oveq2 7438 . . . . . 6 (0 = 𝐵 → (𝐴 +𝑒 0) = (𝐴 +𝑒 𝐵))
1817adantl 481 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → (𝐴 +𝑒 0) = (𝐴 +𝑒 𝐵))
1918breq2d 5159 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → (0 < (𝐴 +𝑒 0) ↔ 0 < (𝐴 +𝑒 𝐵)))
20 simplll 775 . . . . . . 7 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → 𝐴 ∈ (0[,]+∞))
217, 20sselid 3992 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → 𝐴 ∈ ℝ*)
22 xaddrid 13279 . . . . . 6 (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴)
2321, 22syl 17 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → (𝐴 +𝑒 0) = 𝐴)
2423breq2d 5159 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → (0 < (𝐴 +𝑒 0) ↔ 0 < 𝐴))
2519, 24bitr3d 281 . . 3 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → (0 < (𝐴 +𝑒 𝐵) ↔ 0 < 𝐴))
2616, 25mpbird 257 . 2 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → 0 < (𝐴 +𝑒 𝐵))
271a1i 11 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → 0 ∈ ℝ*)
28 simplr 769 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → 𝐵 ∈ (0[,]+∞))
297, 28sselid 3992 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → 𝐵 ∈ ℝ*)
30 pnfxr 11312 . . . . 5 +∞ ∈ ℝ*
3130a1i 11 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → +∞ ∈ ℝ*)
32 iccgelb 13439 . . . 4 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐵 ∈ (0[,]+∞)) → 0 ≤ 𝐵)
3327, 31, 28, 32syl3anc 1370 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → 0 ≤ 𝐵)
34 xrleloe 13182 . . . 4 ((0 ∈ ℝ*𝐵 ∈ ℝ*) → (0 ≤ 𝐵 ↔ (0 < 𝐵 ∨ 0 = 𝐵)))
3534biimpa 476 . . 3 (((0 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 0 ≤ 𝐵) → (0 < 𝐵 ∨ 0 = 𝐵))
3627, 29, 33, 35syl21anc 838 . 2 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → (0 < 𝐵 ∨ 0 = 𝐵))
3715, 26, 36mpjaodan 960 1 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → 0 < (𝐴 +𝑒 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1536  wcel 2105   class class class wbr 5147  (class class class)co 7430  0cc0 11152  +∞cpnf 11289  *cxr 11291   < clt 11292  cle 11293   +𝑒 cxad 13149  [,]cicc 13386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-po 5596  df-so 5597  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-1st 8012  df-2nd 8013  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-xneg 13151  df-xadd 13152  df-icc 13390
This theorem is referenced by:  xrge0adddir  33005
  Copyright terms: Public domain W3C validator