Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0addgt0 Structured version   Visualization version   GIF version

Theorem xrge0addgt0 33003
Description: The sum of nonnegative and positive numbers is positive. See addgtge0 11778. (Contributed by Thierry Arnoux, 6-Jul-2017.)
Assertion
Ref Expression
xrge0addgt0 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → 0 < (𝐴 +𝑒 𝐵))

Proof of Theorem xrge0addgt0
StepHypRef Expression
1 0xr 11337 . . . 4 0 ∈ ℝ*
2 xaddrid 13303 . . . 4 (0 ∈ ℝ* → (0 +𝑒 0) = 0)
31, 2ax-mp 5 . . 3 (0 +𝑒 0) = 0
4 simplr 768 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 0 < 𝐴)
5 simpr 484 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 0 < 𝐵)
61a1i 11 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 0 ∈ ℝ*)
7 iccssxr 13490 . . . . . 6 (0[,]+∞) ⊆ ℝ*
8 simplll 774 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 𝐴 ∈ (0[,]+∞))
97, 8sselid 4006 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 𝐴 ∈ ℝ*)
10 simpllr 775 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 𝐵 ∈ (0[,]+∞))
117, 10sselid 4006 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 𝐵 ∈ ℝ*)
12 xlt2add 13322 . . . . 5 (((0 ∈ ℝ* ∧ 0 ∈ ℝ*) ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*)) → ((0 < 𝐴 ∧ 0 < 𝐵) → (0 +𝑒 0) < (𝐴 +𝑒 𝐵)))
136, 6, 9, 11, 12syl22anc 838 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → ((0 < 𝐴 ∧ 0 < 𝐵) → (0 +𝑒 0) < (𝐴 +𝑒 𝐵)))
144, 5, 13mp2and 698 . . 3 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → (0 +𝑒 0) < (𝐴 +𝑒 𝐵))
153, 14eqbrtrrid 5202 . 2 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 0 < (𝐴 +𝑒 𝐵))
16 simplr 768 . . 3 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → 0 < 𝐴)
17 oveq2 7456 . . . . . 6 (0 = 𝐵 → (𝐴 +𝑒 0) = (𝐴 +𝑒 𝐵))
1817adantl 481 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → (𝐴 +𝑒 0) = (𝐴 +𝑒 𝐵))
1918breq2d 5178 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → (0 < (𝐴 +𝑒 0) ↔ 0 < (𝐴 +𝑒 𝐵)))
20 simplll 774 . . . . . . 7 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → 𝐴 ∈ (0[,]+∞))
217, 20sselid 4006 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → 𝐴 ∈ ℝ*)
22 xaddrid 13303 . . . . . 6 (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴)
2321, 22syl 17 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → (𝐴 +𝑒 0) = 𝐴)
2423breq2d 5178 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → (0 < (𝐴 +𝑒 0) ↔ 0 < 𝐴))
2519, 24bitr3d 281 . . 3 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → (0 < (𝐴 +𝑒 𝐵) ↔ 0 < 𝐴))
2616, 25mpbird 257 . 2 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → 0 < (𝐴 +𝑒 𝐵))
271a1i 11 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → 0 ∈ ℝ*)
28 simplr 768 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → 𝐵 ∈ (0[,]+∞))
297, 28sselid 4006 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → 𝐵 ∈ ℝ*)
30 pnfxr 11344 . . . . 5 +∞ ∈ ℝ*
3130a1i 11 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → +∞ ∈ ℝ*)
32 iccgelb 13463 . . . 4 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐵 ∈ (0[,]+∞)) → 0 ≤ 𝐵)
3327, 31, 28, 32syl3anc 1371 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → 0 ≤ 𝐵)
34 xrleloe 13206 . . . 4 ((0 ∈ ℝ*𝐵 ∈ ℝ*) → (0 ≤ 𝐵 ↔ (0 < 𝐵 ∨ 0 = 𝐵)))
3534biimpa 476 . . 3 (((0 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 0 ≤ 𝐵) → (0 < 𝐵 ∨ 0 = 𝐵))
3627, 29, 33, 35syl21anc 837 . 2 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → (0 < 𝐵 ∨ 0 = 𝐵))
3715, 26, 36mpjaodan 959 1 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → 0 < (𝐴 +𝑒 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846   = wceq 1537  wcel 2108   class class class wbr 5166  (class class class)co 7448  0cc0 11184  +∞cpnf 11321  *cxr 11323   < clt 11324  cle 11325   +𝑒 cxad 13173  [,]cicc 13410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-xneg 13175  df-xadd 13176  df-icc 13414
This theorem is referenced by:  xrge0adddir  33004
  Copyright terms: Public domain W3C validator