Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0addgt0 Structured version   Visualization version   GIF version

Theorem xrge0addgt0 33022
Description: The sum of nonnegative and positive numbers is positive. See addgtge0 11751. (Contributed by Thierry Arnoux, 6-Jul-2017.)
Assertion
Ref Expression
xrge0addgt0 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → 0 < (𝐴 +𝑒 𝐵))

Proof of Theorem xrge0addgt0
StepHypRef Expression
1 0xr 11308 . . . 4 0 ∈ ℝ*
2 xaddrid 13283 . . . 4 (0 ∈ ℝ* → (0 +𝑒 0) = 0)
31, 2ax-mp 5 . . 3 (0 +𝑒 0) = 0
4 simplr 769 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 0 < 𝐴)
5 simpr 484 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 0 < 𝐵)
61a1i 11 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 0 ∈ ℝ*)
7 iccssxr 13470 . . . . . 6 (0[,]+∞) ⊆ ℝ*
8 simplll 775 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 𝐴 ∈ (0[,]+∞))
97, 8sselid 3981 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 𝐴 ∈ ℝ*)
10 simpllr 776 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 𝐵 ∈ (0[,]+∞))
117, 10sselid 3981 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 𝐵 ∈ ℝ*)
12 xlt2add 13302 . . . . 5 (((0 ∈ ℝ* ∧ 0 ∈ ℝ*) ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*)) → ((0 < 𝐴 ∧ 0 < 𝐵) → (0 +𝑒 0) < (𝐴 +𝑒 𝐵)))
136, 6, 9, 11, 12syl22anc 839 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → ((0 < 𝐴 ∧ 0 < 𝐵) → (0 +𝑒 0) < (𝐴 +𝑒 𝐵)))
144, 5, 13mp2and 699 . . 3 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → (0 +𝑒 0) < (𝐴 +𝑒 𝐵))
153, 14eqbrtrrid 5179 . 2 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 0 < (𝐴 +𝑒 𝐵))
16 simplr 769 . . 3 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → 0 < 𝐴)
17 oveq2 7439 . . . . . 6 (0 = 𝐵 → (𝐴 +𝑒 0) = (𝐴 +𝑒 𝐵))
1817adantl 481 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → (𝐴 +𝑒 0) = (𝐴 +𝑒 𝐵))
1918breq2d 5155 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → (0 < (𝐴 +𝑒 0) ↔ 0 < (𝐴 +𝑒 𝐵)))
20 simplll 775 . . . . . . 7 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → 𝐴 ∈ (0[,]+∞))
217, 20sselid 3981 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → 𝐴 ∈ ℝ*)
22 xaddrid 13283 . . . . . 6 (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴)
2321, 22syl 17 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → (𝐴 +𝑒 0) = 𝐴)
2423breq2d 5155 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → (0 < (𝐴 +𝑒 0) ↔ 0 < 𝐴))
2519, 24bitr3d 281 . . 3 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → (0 < (𝐴 +𝑒 𝐵) ↔ 0 < 𝐴))
2616, 25mpbird 257 . 2 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → 0 < (𝐴 +𝑒 𝐵))
271a1i 11 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → 0 ∈ ℝ*)
28 simplr 769 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → 𝐵 ∈ (0[,]+∞))
297, 28sselid 3981 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → 𝐵 ∈ ℝ*)
30 pnfxr 11315 . . . . 5 +∞ ∈ ℝ*
3130a1i 11 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → +∞ ∈ ℝ*)
32 iccgelb 13443 . . . 4 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐵 ∈ (0[,]+∞)) → 0 ≤ 𝐵)
3327, 31, 28, 32syl3anc 1373 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → 0 ≤ 𝐵)
34 xrleloe 13186 . . . 4 ((0 ∈ ℝ*𝐵 ∈ ℝ*) → (0 ≤ 𝐵 ↔ (0 < 𝐵 ∨ 0 = 𝐵)))
3534biimpa 476 . . 3 (((0 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 0 ≤ 𝐵) → (0 < 𝐵 ∨ 0 = 𝐵))
3627, 29, 33, 35syl21anc 838 . 2 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → (0 < 𝐵 ∨ 0 = 𝐵))
3715, 26, 36mpjaodan 961 1 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → 0 < (𝐴 +𝑒 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 848   = wceq 1540  wcel 2108   class class class wbr 5143  (class class class)co 7431  0cc0 11155  +∞cpnf 11292  *cxr 11294   < clt 11295  cle 11296   +𝑒 cxad 13152  [,]cicc 13390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-xneg 13154  df-xadd 13155  df-icc 13394
This theorem is referenced by:  xrge0adddir  33023
  Copyright terms: Public domain W3C validator