Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0addgt0 Structured version   Visualization version   GIF version

Theorem xrge0addgt0 30703
Description: The sum of nonnegative and positive numbers is positive. See addgtge0 11120. (Contributed by Thierry Arnoux, 6-Jul-2017.)
Assertion
Ref Expression
xrge0addgt0 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → 0 < (𝐴 +𝑒 𝐵))

Proof of Theorem xrge0addgt0
StepHypRef Expression
1 0xr 10680 . . . 4 0 ∈ ℝ*
2 xaddid1 12627 . . . 4 (0 ∈ ℝ* → (0 +𝑒 0) = 0)
31, 2ax-mp 5 . . 3 (0 +𝑒 0) = 0
4 simplr 768 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 0 < 𝐴)
5 simpr 488 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 0 < 𝐵)
61a1i 11 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 0 ∈ ℝ*)
7 iccssxr 12813 . . . . . 6 (0[,]+∞) ⊆ ℝ*
8 simplll 774 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 𝐴 ∈ (0[,]+∞))
97, 8sseldi 3950 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 𝐴 ∈ ℝ*)
10 simpllr 775 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 𝐵 ∈ (0[,]+∞))
117, 10sseldi 3950 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 𝐵 ∈ ℝ*)
12 xlt2add 12646 . . . . 5 (((0 ∈ ℝ* ∧ 0 ∈ ℝ*) ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*)) → ((0 < 𝐴 ∧ 0 < 𝐵) → (0 +𝑒 0) < (𝐴 +𝑒 𝐵)))
136, 6, 9, 11, 12syl22anc 837 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → ((0 < 𝐴 ∧ 0 < 𝐵) → (0 +𝑒 0) < (𝐴 +𝑒 𝐵)))
144, 5, 13mp2and 698 . . 3 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → (0 +𝑒 0) < (𝐴 +𝑒 𝐵))
153, 14eqbrtrrid 5088 . 2 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 0 < (𝐴 +𝑒 𝐵))
16 simplr 768 . . 3 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → 0 < 𝐴)
17 oveq2 7153 . . . . . 6 (0 = 𝐵 → (𝐴 +𝑒 0) = (𝐴 +𝑒 𝐵))
1817adantl 485 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → (𝐴 +𝑒 0) = (𝐴 +𝑒 𝐵))
1918breq2d 5064 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → (0 < (𝐴 +𝑒 0) ↔ 0 < (𝐴 +𝑒 𝐵)))
20 simplll 774 . . . . . . 7 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → 𝐴 ∈ (0[,]+∞))
217, 20sseldi 3950 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → 𝐴 ∈ ℝ*)
22 xaddid1 12627 . . . . . 6 (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴)
2321, 22syl 17 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → (𝐴 +𝑒 0) = 𝐴)
2423breq2d 5064 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → (0 < (𝐴 +𝑒 0) ↔ 0 < 𝐴))
2519, 24bitr3d 284 . . 3 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → (0 < (𝐴 +𝑒 𝐵) ↔ 0 < 𝐴))
2616, 25mpbird 260 . 2 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → 0 < (𝐴 +𝑒 𝐵))
271a1i 11 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → 0 ∈ ℝ*)
28 simplr 768 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → 𝐵 ∈ (0[,]+∞))
297, 28sseldi 3950 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → 𝐵 ∈ ℝ*)
30 pnfxr 10687 . . . . 5 +∞ ∈ ℝ*
3130a1i 11 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → +∞ ∈ ℝ*)
32 iccgelb 12786 . . . 4 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐵 ∈ (0[,]+∞)) → 0 ≤ 𝐵)
3327, 31, 28, 32syl3anc 1368 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → 0 ≤ 𝐵)
34 xrleloe 12530 . . . 4 ((0 ∈ ℝ*𝐵 ∈ ℝ*) → (0 ≤ 𝐵 ↔ (0 < 𝐵 ∨ 0 = 𝐵)))
3534biimpa 480 . . 3 (((0 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 0 ≤ 𝐵) → (0 < 𝐵 ∨ 0 = 𝐵))
3627, 29, 33, 35syl21anc 836 . 2 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → (0 < 𝐵 ∨ 0 = 𝐵))
3715, 26, 36mpjaodan 956 1 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → 0 < (𝐴 +𝑒 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 844   = wceq 1538  wcel 2115   class class class wbr 5052  (class class class)co 7145  0cc0 10529  +∞cpnf 10664  *cxr 10666   < clt 10667  cle 10668   +𝑒 cxad 12498  [,]cicc 12734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4276  df-if 4450  df-pw 4523  df-sn 4550  df-pr 4552  df-op 4556  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-po 5461  df-so 5462  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7679  df-2nd 7680  df-er 8279  df-en 8500  df-dom 8501  df-sdom 8502  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-xneg 12500  df-xadd 12501  df-icc 12738
This theorem is referenced by:  xrge0adddir  30704
  Copyright terms: Public domain W3C validator