Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0addgt0 Structured version   Visualization version   GIF version

Theorem xrge0addgt0 31279
Description: The sum of nonnegative and positive numbers is positive. See addgtge0 11446. (Contributed by Thierry Arnoux, 6-Jul-2017.)
Assertion
Ref Expression
xrge0addgt0 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → 0 < (𝐴 +𝑒 𝐵))

Proof of Theorem xrge0addgt0
StepHypRef Expression
1 0xr 11006 . . . 4 0 ∈ ℝ*
2 xaddid1 12957 . . . 4 (0 ∈ ℝ* → (0 +𝑒 0) = 0)
31, 2ax-mp 5 . . 3 (0 +𝑒 0) = 0
4 simplr 765 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 0 < 𝐴)
5 simpr 484 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 0 < 𝐵)
61a1i 11 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 0 ∈ ℝ*)
7 iccssxr 13144 . . . . . 6 (0[,]+∞) ⊆ ℝ*
8 simplll 771 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 𝐴 ∈ (0[,]+∞))
97, 8sselid 3923 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 𝐴 ∈ ℝ*)
10 simpllr 772 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 𝐵 ∈ (0[,]+∞))
117, 10sselid 3923 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 𝐵 ∈ ℝ*)
12 xlt2add 12976 . . . . 5 (((0 ∈ ℝ* ∧ 0 ∈ ℝ*) ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*)) → ((0 < 𝐴 ∧ 0 < 𝐵) → (0 +𝑒 0) < (𝐴 +𝑒 𝐵)))
136, 6, 9, 11, 12syl22anc 835 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → ((0 < 𝐴 ∧ 0 < 𝐵) → (0 +𝑒 0) < (𝐴 +𝑒 𝐵)))
144, 5, 13mp2and 695 . . 3 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → (0 +𝑒 0) < (𝐴 +𝑒 𝐵))
153, 14eqbrtrrid 5114 . 2 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 0 < (𝐴 +𝑒 𝐵))
16 simplr 765 . . 3 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → 0 < 𝐴)
17 oveq2 7276 . . . . . 6 (0 = 𝐵 → (𝐴 +𝑒 0) = (𝐴 +𝑒 𝐵))
1817adantl 481 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → (𝐴 +𝑒 0) = (𝐴 +𝑒 𝐵))
1918breq2d 5090 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → (0 < (𝐴 +𝑒 0) ↔ 0 < (𝐴 +𝑒 𝐵)))
20 simplll 771 . . . . . . 7 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → 𝐴 ∈ (0[,]+∞))
217, 20sselid 3923 . . . . . 6 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → 𝐴 ∈ ℝ*)
22 xaddid1 12957 . . . . . 6 (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴)
2321, 22syl 17 . . . . 5 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → (𝐴 +𝑒 0) = 𝐴)
2423breq2d 5090 . . . 4 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → (0 < (𝐴 +𝑒 0) ↔ 0 < 𝐴))
2519, 24bitr3d 280 . . 3 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → (0 < (𝐴 +𝑒 𝐵) ↔ 0 < 𝐴))
2616, 25mpbird 256 . 2 ((((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → 0 < (𝐴 +𝑒 𝐵))
271a1i 11 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → 0 ∈ ℝ*)
28 simplr 765 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → 𝐵 ∈ (0[,]+∞))
297, 28sselid 3923 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → 𝐵 ∈ ℝ*)
30 pnfxr 11013 . . . . 5 +∞ ∈ ℝ*
3130a1i 11 . . . 4 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → +∞ ∈ ℝ*)
32 iccgelb 13117 . . . 4 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐵 ∈ (0[,]+∞)) → 0 ≤ 𝐵)
3327, 31, 28, 32syl3anc 1369 . . 3 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → 0 ≤ 𝐵)
34 xrleloe 12860 . . . 4 ((0 ∈ ℝ*𝐵 ∈ ℝ*) → (0 ≤ 𝐵 ↔ (0 < 𝐵 ∨ 0 = 𝐵)))
3534biimpa 476 . . 3 (((0 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 0 ≤ 𝐵) → (0 < 𝐵 ∨ 0 = 𝐵))
3627, 29, 33, 35syl21anc 834 . 2 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → (0 < 𝐵 ∨ 0 = 𝐵))
3715, 26, 36mpjaodan 955 1 (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → 0 < (𝐴 +𝑒 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843   = wceq 1541  wcel 2109   class class class wbr 5078  (class class class)co 7268  0cc0 10855  +∞cpnf 10990  *cxr 10992   < clt 10993  cle 10994   +𝑒 cxad 12828  [,]cicc 13064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-po 5502  df-so 5503  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-1st 7817  df-2nd 7818  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-xneg 12830  df-xadd 12831  df-icc 13068
This theorem is referenced by:  xrge0adddir  31280
  Copyright terms: Public domain W3C validator