![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xmetlecl | Structured version Visualization version GIF version |
Description: Real closure of an extended metric value that is upper bounded by a real. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xmetlecl | β’ ((π· β (βMetβπ) β§ (π΄ β π β§ π΅ β π) β§ (πΆ β β β§ (π΄π·π΅) β€ πΆ)) β (π΄π·π΅) β β) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xmetcl 24057 | . . . 4 β’ ((π· β (βMetβπ) β§ π΄ β π β§ π΅ β π) β (π΄π·π΅) β β*) | |
2 | 1 | 3expb 1118 | . . 3 β’ ((π· β (βMetβπ) β§ (π΄ β π β§ π΅ β π)) β (π΄π·π΅) β β*) |
3 | 2 | 3adant3 1130 | . 2 β’ ((π· β (βMetβπ) β§ (π΄ β π β§ π΅ β π) β§ (πΆ β β β§ (π΄π·π΅) β€ πΆ)) β (π΄π·π΅) β β*) |
4 | simp3l 1199 | . 2 β’ ((π· β (βMetβπ) β§ (π΄ β π β§ π΅ β π) β§ (πΆ β β β§ (π΄π·π΅) β€ πΆ)) β πΆ β β) | |
5 | xmetge0 24070 | . . . 4 β’ ((π· β (βMetβπ) β§ π΄ β π β§ π΅ β π) β 0 β€ (π΄π·π΅)) | |
6 | 5 | 3expb 1118 | . . 3 β’ ((π· β (βMetβπ) β§ (π΄ β π β§ π΅ β π)) β 0 β€ (π΄π·π΅)) |
7 | 6 | 3adant3 1130 | . 2 β’ ((π· β (βMetβπ) β§ (π΄ β π β§ π΅ β π) β§ (πΆ β β β§ (π΄π·π΅) β€ πΆ)) β 0 β€ (π΄π·π΅)) |
8 | simp3r 1200 | . 2 β’ ((π· β (βMetβπ) β§ (π΄ β π β§ π΅ β π) β§ (πΆ β β β§ (π΄π·π΅) β€ πΆ)) β (π΄π·π΅) β€ πΆ) | |
9 | xrrege0 13157 | . 2 β’ ((((π΄π·π΅) β β* β§ πΆ β β) β§ (0 β€ (π΄π·π΅) β§ (π΄π·π΅) β€ πΆ)) β (π΄π·π΅) β β) | |
10 | 3, 4, 7, 8, 9 | syl22anc 835 | 1 β’ ((π· β (βMetβπ) β§ (π΄ β π β§ π΅ β π) β§ (πΆ β β β§ (π΄π·π΅) β€ πΆ)) β (π΄π·π΅) β β) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 β§ w3a 1085 β wcel 2104 class class class wbr 5147 βcfv 6542 (class class class)co 7411 βcr 11111 0cc0 11112 β*cxr 11251 β€ cle 11253 βMetcxmet 21129 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-2 12279 df-rp 12979 df-xneg 13096 df-xadd 13097 df-xmul 13098 df-xmet 21137 |
This theorem is referenced by: blss2 24130 blss 24151 xmeter 24159 metdcnlem 24572 |
Copyright terms: Public domain | W3C validator |