| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > perfectlem1 | Unicode version | ||
| Description: Lemma for perfect 15237. (Contributed by Mario Carneiro, 7-Jun-2016.) | 
| Ref | Expression | 
|---|---|
| perfectlem.1 | 
 | 
| perfectlem.2 | 
 | 
| perfectlem.3 | 
 | 
| perfectlem.4 | 
 | 
| Ref | Expression | 
|---|---|
| perfectlem1 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 2nn 9152 | 
. . 3
 | |
| 2 | perfectlem.1 | 
. . . . 5
 | |
| 3 | 2 | nnnn0d 9302 | 
. . . 4
 | 
| 4 | peano2nn0 9289 | 
. . . 4
 | |
| 5 | 3, 4 | syl 14 | 
. . 3
 | 
| 6 | nnexpcl 10644 | 
. . 3
 | |
| 7 | 1, 5, 6 | sylancr 414 | 
. 2
 | 
| 8 | 2re 9060 | 
. . . 4
 | |
| 9 | 2 | peano2nnd 9005 | 
. . . 4
 | 
| 10 | 1lt2 9160 | 
. . . . 5
 | |
| 11 | 10 | a1i 9 | 
. . . 4
 | 
| 12 | expgt1 10669 | 
. . . 4
 | |
| 13 | 8, 9, 11, 12 | mp3an2i 1353 | 
. . 3
 | 
| 14 | 1nn 9001 | 
. . . 4
 | |
| 15 | nnsub 9029 | 
. . . 4
 | |
| 16 | 14, 7, 15 | sylancr 414 | 
. . 3
 | 
| 17 | 13, 16 | mpbid 147 | 
. 2
 | 
| 18 | 7 | nnzd 9447 | 
. . . . . . 7
 | 
| 19 | peano2zm 9364 | 
. . . . . . 7
 | |
| 20 | 18, 19 | syl 14 | 
. . . . . 6
 | 
| 21 | 1nn0 9265 | 
. . . . . . . 8
 | |
| 22 | perfectlem.2 | 
. . . . . . . 8
 | |
| 23 | sgmnncl 15224 | 
. . . . . . . 8
 | |
| 24 | 21, 22, 23 | sylancr 414 | 
. . . . . . 7
 | 
| 25 | 24 | nnzd 9447 | 
. . . . . 6
 | 
| 26 | dvdsmul1 11978 | 
. . . . . 6
 | |
| 27 | 20, 25, 26 | syl2anc 411 | 
. . . . 5
 | 
| 28 | 2cn 9061 | 
. . . . . . . . 9
 | |
| 29 | expp1 10638 | 
. . . . . . . . 9
 | |
| 30 | 28, 3, 29 | sylancr 414 | 
. . . . . . . 8
 | 
| 31 | nnexpcl 10644 | 
. . . . . . . . . . 11
 | |
| 32 | 1, 3, 31 | sylancr 414 | 
. . . . . . . . . 10
 | 
| 33 | 32 | nncnd 9004 | 
. . . . . . . . 9
 | 
| 34 | mulcom 8008 | 
. . . . . . . . 9
 | |
| 35 | 33, 28, 34 | sylancl 413 | 
. . . . . . . 8
 | 
| 36 | 30, 35 | eqtrd 2229 | 
. . . . . . 7
 | 
| 37 | 36 | oveq1d 5937 | 
. . . . . 6
 | 
| 38 | 28 | a1i 9 | 
. . . . . . 7
 | 
| 39 | 22 | nncnd 9004 | 
. . . . . . 7
 | 
| 40 | 38, 33, 39 | mulassd 8050 | 
. . . . . 6
 | 
| 41 | ax-1cn 7972 | 
. . . . . . . . 9
 | |
| 42 | 41 | a1i 9 | 
. . . . . . . 8
 | 
| 43 | perfectlem.3 | 
. . . . . . . . . 10
 | |
| 44 | 2prm 12295 | 
. . . . . . . . . . 11
 | |
| 45 | 22 | nnzd 9447 | 
. . . . . . . . . . 11
 | 
| 46 | coprm 12312 | 
. . . . . . . . . . 11
 | |
| 47 | 44, 45, 46 | sylancr 414 | 
. . . . . . . . . 10
 | 
| 48 | 43, 47 | mpbid 147 | 
. . . . . . . . 9
 | 
| 49 | 2z 9354 | 
. . . . . . . . . 10
 | |
| 50 | rpexp1i 12322 | 
. . . . . . . . . 10
 | |
| 51 | 49, 45, 3, 50 | mp3an2i 1353 | 
. . . . . . . . 9
 | 
| 52 | 48, 51 | mpd 13 | 
. . . . . . . 8
 | 
| 53 | sgmmul 15232 | 
. . . . . . . 8
 | |
| 54 | 42, 32, 22, 52, 53 | syl13anc 1251 | 
. . . . . . 7
 | 
| 55 | perfectlem.4 | 
. . . . . . 7
 | |
| 56 | 2 | nncnd 9004 | 
. . . . . . . . . . . 12
 | 
| 57 | pncan 8232 | 
. . . . . . . . . . . 12
 | |
| 58 | 56, 41, 57 | sylancl 413 | 
. . . . . . . . . . 11
 | 
| 59 | 58 | oveq2d 5938 | 
. . . . . . . . . 10
 | 
| 60 | 59 | oveq2d 5938 | 
. . . . . . . . 9
 | 
| 61 | 1sgm2ppw 15231 | 
. . . . . . . . . 10
 | |
| 62 | 9, 61 | syl 14 | 
. . . . . . . . 9
 | 
| 63 | 60, 62 | eqtr3d 2231 | 
. . . . . . . 8
 | 
| 64 | 63 | oveq1d 5937 | 
. . . . . . 7
 | 
| 65 | 54, 55, 64 | 3eqtr3d 2237 | 
. . . . . 6
 | 
| 66 | 37, 40, 65 | 3eqtrd 2233 | 
. . . . 5
 | 
| 67 | 27, 66 | breqtrrd 4061 | 
. . . 4
 | 
| 68 | 20, 18 | gcdcomd 12141 | 
. . . . 5
 | 
| 69 | iddvdsexp 11980 | 
. . . . . . . . 9
 | |
| 70 | 49, 9, 69 | sylancr 414 | 
. . . . . . . 8
 | 
| 71 | n2dvds1 12077 | 
. . . . . . . . . 10
 | |
| 72 | 49 | a1i 9 | 
. . . . . . . . . . . 12
 | 
| 73 | 1zzd 9353 | 
. . . . . . . . . . . 12
 | |
| 74 | 72, 18, 73 | 3jca 1179 | 
. . . . . . . . . . 11
 | 
| 75 | dvdssub2 12000 | 
. . . . . . . . . . 11
 | |
| 76 | 74, 75 | sylan 283 | 
. . . . . . . . . 10
 | 
| 77 | 71, 76 | mtbiri 676 | 
. . . . . . . . 9
 | 
| 78 | 77 | ex 115 | 
. . . . . . . 8
 | 
| 79 | 70, 78 | mt2d 626 | 
. . . . . . 7
 | 
| 80 | coprm 12312 | 
. . . . . . . 8
 | |
| 81 | 44, 20, 80 | sylancr 414 | 
. . . . . . 7
 | 
| 82 | 79, 81 | mpbid 147 | 
. . . . . 6
 | 
| 83 | rpexp1i 12322 | 
. . . . . . 7
 | |
| 84 | 49, 20, 5, 83 | mp3an2i 1353 | 
. . . . . 6
 | 
| 85 | 82, 84 | mpd 13 | 
. . . . 5
 | 
| 86 | 68, 85 | eqtrd 2229 | 
. . . 4
 | 
| 87 | coprmdvds 12260 | 
. . . . 5
 | |
| 88 | 20, 18, 45, 87 | syl3anc 1249 | 
. . . 4
 | 
| 89 | 67, 86, 88 | mp2and 433 | 
. . 3
 | 
| 90 | nndivdvds 11961 | 
. . . 4
 | |
| 91 | 22, 17, 90 | syl2anc 411 | 
. . 3
 | 
| 92 | 89, 91 | mpbid 147 | 
. 2
 | 
| 93 | 7, 17, 92 | 3jca 1179 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 ax-pre-suploc 8000 ax-addf 8001 ax-mulf 8002 | 
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-disj 4011 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-of 6135 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-frec 6449 df-1o 6474 df-2o 6475 df-oadd 6478 df-er 6592 df-map 6709 df-pm 6710 df-en 6800 df-dom 6801 df-fin 6802 df-sup 7050 df-inf 7051 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-xnn0 9313 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-xneg 9847 df-xadd 9848 df-ioo 9967 df-ico 9969 df-icc 9970 df-fz 10084 df-fzo 10218 df-fl 10360 df-mod 10415 df-seqfrec 10540 df-exp 10631 df-fac 10818 df-bc 10840 df-ihash 10868 df-shft 10980 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-clim 11444 df-sumdc 11519 df-ef 11813 df-e 11814 df-dvds 11953 df-gcd 12121 df-prm 12276 df-pc 12454 df-rest 12912 df-topgen 12931 df-psmet 14099 df-xmet 14100 df-met 14101 df-bl 14102 df-mopn 14103 df-top 14234 df-topon 14247 df-bases 14279 df-ntr 14332 df-cn 14424 df-cnp 14425 df-tx 14489 df-cncf 14807 df-limced 14892 df-dvap 14893 df-relog 15094 df-rpcxp 15095 df-sgm 15218 | 
| This theorem is referenced by: perfectlem2 15236 | 
| Copyright terms: Public domain | W3C validator |