ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  perfectlem1 Unicode version

Theorem perfectlem1 15681
Description: Lemma for perfect 15683. (Contributed by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
perfectlem.1  |-  ( ph  ->  A  e.  NN )
perfectlem.2  |-  ( ph  ->  B  e.  NN )
perfectlem.3  |-  ( ph  ->  -.  2  ||  B
)
perfectlem.4  |-  ( ph  ->  ( 1  sigma  ( ( 2 ^ A )  x.  B ) )  =  ( 2  x.  ( ( 2 ^ A )  x.  B
) ) )
Assertion
Ref Expression
perfectlem1  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  e.  NN  /\  ( ( 2 ^ ( A  +  1 ) )  -  1 )  e.  NN  /\  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  e.  NN ) )

Proof of Theorem perfectlem1
StepHypRef Expression
1 2nn 9280 . . 3  |-  2  e.  NN
2 perfectlem.1 . . . . 5  |-  ( ph  ->  A  e.  NN )
32nnnn0d 9430 . . . 4  |-  ( ph  ->  A  e.  NN0 )
4 peano2nn0 9417 . . . 4  |-  ( A  e.  NN0  ->  ( A  +  1 )  e. 
NN0 )
53, 4syl 14 . . 3  |-  ( ph  ->  ( A  +  1 )  e.  NN0 )
6 nnexpcl 10782 . . 3  |-  ( ( 2  e.  NN  /\  ( A  +  1
)  e.  NN0 )  ->  ( 2 ^ ( A  +  1 ) )  e.  NN )
71, 5, 6sylancr 414 . 2  |-  ( ph  ->  ( 2 ^ ( A  +  1 ) )  e.  NN )
8 2re 9188 . . . 4  |-  2  e.  RR
92peano2nnd 9133 . . . 4  |-  ( ph  ->  ( A  +  1 )  e.  NN )
10 1lt2 9288 . . . . 5  |-  1  <  2
1110a1i 9 . . . 4  |-  ( ph  ->  1  <  2 )
12 expgt1 10807 . . . 4  |-  ( ( 2  e.  RR  /\  ( A  +  1
)  e.  NN  /\  1  <  2 )  -> 
1  <  ( 2 ^ ( A  + 
1 ) ) )
138, 9, 11, 12mp3an2i 1376 . . 3  |-  ( ph  ->  1  <  ( 2 ^ ( A  + 
1 ) ) )
14 1nn 9129 . . . 4  |-  1  e.  NN
15 nnsub 9157 . . . 4  |-  ( ( 1  e.  NN  /\  ( 2 ^ ( A  +  1 ) )  e.  NN )  ->  ( 1  < 
( 2 ^ ( A  +  1 ) )  <->  ( ( 2 ^ ( A  + 
1 ) )  - 
1 )  e.  NN ) )
1614, 7, 15sylancr 414 . . 3  |-  ( ph  ->  ( 1  <  (
2 ^ ( A  +  1 ) )  <-> 
( ( 2 ^ ( A  +  1 ) )  -  1 )  e.  NN ) )
1713, 16mpbid 147 . 2  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  -  1 )  e.  NN )
187nnzd 9576 . . . . . . 7  |-  ( ph  ->  ( 2 ^ ( A  +  1 ) )  e.  ZZ )
19 peano2zm 9492 . . . . . . 7  |-  ( ( 2 ^ ( A  +  1 ) )  e.  ZZ  ->  (
( 2 ^ ( A  +  1 ) )  -  1 )  e.  ZZ )
2018, 19syl 14 . . . . . 6  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  -  1 )  e.  ZZ )
21 1nn0 9393 . . . . . . . 8  |-  1  e.  NN0
22 perfectlem.2 . . . . . . . 8  |-  ( ph  ->  B  e.  NN )
23 sgmnncl 15670 . . . . . . . 8  |-  ( ( 1  e.  NN0  /\  B  e.  NN )  ->  ( 1  sigma  B )  e.  NN )
2421, 22, 23sylancr 414 . . . . . . 7  |-  ( ph  ->  ( 1  sigma  B )  e.  NN )
2524nnzd 9576 . . . . . 6  |-  ( ph  ->  ( 1  sigma  B )  e.  ZZ )
26 dvdsmul1 12332 . . . . . 6  |-  ( ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  e.  ZZ  /\  ( 1  sigma  B )  e.  ZZ )  -> 
( ( 2 ^ ( A  +  1 ) )  -  1 )  ||  ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  x.  ( 1  sigma  B ) ) )
2720, 25, 26syl2anc 411 . . . . 5  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  -  1 )  ||  ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  x.  ( 1  sigma  B ) ) )
28 2cn 9189 . . . . . . . . 9  |-  2  e.  CC
29 expp1 10776 . . . . . . . . 9  |-  ( ( 2  e.  CC  /\  A  e.  NN0 )  -> 
( 2 ^ ( A  +  1 ) )  =  ( ( 2 ^ A )  x.  2 ) )
3028, 3, 29sylancr 414 . . . . . . . 8  |-  ( ph  ->  ( 2 ^ ( A  +  1 ) )  =  ( ( 2 ^ A )  x.  2 ) )
31 nnexpcl 10782 . . . . . . . . . . 11  |-  ( ( 2  e.  NN  /\  A  e.  NN0 )  -> 
( 2 ^ A
)  e.  NN )
321, 3, 31sylancr 414 . . . . . . . . . 10  |-  ( ph  ->  ( 2 ^ A
)  e.  NN )
3332nncnd 9132 . . . . . . . . 9  |-  ( ph  ->  ( 2 ^ A
)  e.  CC )
34 mulcom 8136 . . . . . . . . 9  |-  ( ( ( 2 ^ A
)  e.  CC  /\  2  e.  CC )  ->  ( ( 2 ^ A )  x.  2 )  =  ( 2  x.  ( 2 ^ A ) ) )
3533, 28, 34sylancl 413 . . . . . . . 8  |-  ( ph  ->  ( ( 2 ^ A )  x.  2 )  =  ( 2  x.  ( 2 ^ A ) ) )
3630, 35eqtrd 2262 . . . . . . 7  |-  ( ph  ->  ( 2 ^ ( A  +  1 ) )  =  ( 2  x.  ( 2 ^ A ) ) )
3736oveq1d 6022 . . . . . 6  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  x.  B
)  =  ( ( 2  x.  ( 2 ^ A ) )  x.  B ) )
3828a1i 9 . . . . . . 7  |-  ( ph  ->  2  e.  CC )
3922nncnd 9132 . . . . . . 7  |-  ( ph  ->  B  e.  CC )
4038, 33, 39mulassd 8178 . . . . . 6  |-  ( ph  ->  ( ( 2  x.  ( 2 ^ A
) )  x.  B
)  =  ( 2  x.  ( ( 2 ^ A )  x.  B ) ) )
41 ax-1cn 8100 . . . . . . . . 9  |-  1  e.  CC
4241a1i 9 . . . . . . . 8  |-  ( ph  ->  1  e.  CC )
43 perfectlem.3 . . . . . . . . . 10  |-  ( ph  ->  -.  2  ||  B
)
44 2prm 12657 . . . . . . . . . . 11  |-  2  e.  Prime
4522nnzd 9576 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  ZZ )
46 coprm 12674 . . . . . . . . . . 11  |-  ( ( 2  e.  Prime  /\  B  e.  ZZ )  ->  ( -.  2  ||  B  <->  ( 2  gcd  B )  =  1 ) )
4744, 45, 46sylancr 414 . . . . . . . . . 10  |-  ( ph  ->  ( -.  2  ||  B 
<->  ( 2  gcd  B
)  =  1 ) )
4843, 47mpbid 147 . . . . . . . . 9  |-  ( ph  ->  ( 2  gcd  B
)  =  1 )
49 2z 9482 . . . . . . . . . 10  |-  2  e.  ZZ
50 rpexp1i 12684 . . . . . . . . . 10  |-  ( ( 2  e.  ZZ  /\  B  e.  ZZ  /\  A  e.  NN0 )  ->  (
( 2  gcd  B
)  =  1  -> 
( ( 2 ^ A )  gcd  B
)  =  1 ) )
5149, 45, 3, 50mp3an2i 1376 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  gcd 
B )  =  1  ->  ( ( 2 ^ A )  gcd 
B )  =  1 ) )
5248, 51mpd 13 . . . . . . . 8  |-  ( ph  ->  ( ( 2 ^ A )  gcd  B
)  =  1 )
53 sgmmul 15678 . . . . . . . 8  |-  ( ( 1  e.  CC  /\  ( ( 2 ^ A )  e.  NN  /\  B  e.  NN  /\  ( ( 2 ^ A )  gcd  B
)  =  1 ) )  ->  ( 1 
sigma  ( ( 2 ^ A )  x.  B
) )  =  ( ( 1  sigma  ( 2 ^ A ) )  x.  ( 1  sigma  B ) ) )
5442, 32, 22, 52, 53syl13anc 1273 . . . . . . 7  |-  ( ph  ->  ( 1  sigma  ( ( 2 ^ A )  x.  B ) )  =  ( ( 1 
sigma  ( 2 ^ A
) )  x.  (
1  sigma  B ) ) )
55 perfectlem.4 . . . . . . 7  |-  ( ph  ->  ( 1  sigma  ( ( 2 ^ A )  x.  B ) )  =  ( 2  x.  ( ( 2 ^ A )  x.  B
) ) )
562nncnd 9132 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  CC )
57 pncan 8360 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( ( A  + 
1 )  -  1 )  =  A )
5856, 41, 57sylancl 413 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A  + 
1 )  -  1 )  =  A )
5958oveq2d 6023 . . . . . . . . . 10  |-  ( ph  ->  ( 2 ^ (
( A  +  1 )  -  1 ) )  =  ( 2 ^ A ) )
6059oveq2d 6023 . . . . . . . . 9  |-  ( ph  ->  ( 1  sigma  ( 2 ^ ( ( A  +  1 )  - 
1 ) ) )  =  ( 1  sigma 
( 2 ^ A
) ) )
61 1sgm2ppw 15677 . . . . . . . . . 10  |-  ( ( A  +  1 )  e.  NN  ->  (
1  sigma  ( 2 ^ ( ( A  + 
1 )  -  1 ) ) )  =  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )
629, 61syl 14 . . . . . . . . 9  |-  ( ph  ->  ( 1  sigma  ( 2 ^ ( ( A  +  1 )  - 
1 ) ) )  =  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) )
6360, 62eqtr3d 2264 . . . . . . . 8  |-  ( ph  ->  ( 1  sigma  ( 2 ^ A ) )  =  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) )
6463oveq1d 6022 . . . . . . 7  |-  ( ph  ->  ( ( 1  sigma 
( 2 ^ A
) )  x.  (
1  sigma  B ) )  =  ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  x.  ( 1  sigma  B ) ) )
6554, 55, 643eqtr3d 2270 . . . . . 6  |-  ( ph  ->  ( 2  x.  (
( 2 ^ A
)  x.  B ) )  =  ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  x.  ( 1  sigma  B ) ) )
6637, 40, 653eqtrd 2266 . . . . 5  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  x.  B
)  =  ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  x.  ( 1  sigma  B ) ) )
6727, 66breqtrrd 4111 . . . 4  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  -  1 )  ||  ( ( 2 ^ ( A  +  1 ) )  x.  B ) )
6820, 18gcdcomd 12503 . . . . 5  |-  ( ph  ->  ( ( ( 2 ^ ( A  + 
1 ) )  - 
1 )  gcd  (
2 ^ ( A  +  1 ) ) )  =  ( ( 2 ^ ( A  +  1 ) )  gcd  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )
69 iddvdsexp 12334 . . . . . . . . 9  |-  ( ( 2  e.  ZZ  /\  ( A  +  1
)  e.  NN )  ->  2  ||  (
2 ^ ( A  +  1 ) ) )
7049, 9, 69sylancr 414 . . . . . . . 8  |-  ( ph  ->  2  ||  ( 2 ^ ( A  + 
1 ) ) )
71 n2dvds1 12431 . . . . . . . . . 10  |-  -.  2  ||  1
7249a1i 9 . . . . . . . . . . . 12  |-  ( ph  ->  2  e.  ZZ )
73 1zzd 9481 . . . . . . . . . . . 12  |-  ( ph  ->  1  e.  ZZ )
7472, 18, 733jca 1201 . . . . . . . . . . 11  |-  ( ph  ->  ( 2  e.  ZZ  /\  ( 2 ^ ( A  +  1 ) )  e.  ZZ  /\  1  e.  ZZ )
)
75 dvdssub2 12354 . . . . . . . . . . 11  |-  ( ( ( 2  e.  ZZ  /\  ( 2 ^ ( A  +  1 ) )  e.  ZZ  /\  1  e.  ZZ )  /\  2  ||  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  ( 2  ||  ( 2 ^ ( A  +  1 ) )  <->  2  ||  1
) )
7674, 75sylan 283 . . . . . . . . . 10  |-  ( (
ph  /\  2  ||  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  (
2  ||  ( 2 ^ ( A  + 
1 ) )  <->  2  ||  1 ) )
7771, 76mtbiri 679 . . . . . . . . 9  |-  ( (
ph  /\  2  ||  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  -.  2  ||  ( 2 ^ ( A  +  1 ) ) )
7877ex 115 . . . . . . . 8  |-  ( ph  ->  ( 2  ||  (
( 2 ^ ( A  +  1 ) )  -  1 )  ->  -.  2  ||  ( 2 ^ ( A  +  1 ) ) ) )
7970, 78mt2d 628 . . . . . . 7  |-  ( ph  ->  -.  2  ||  (
( 2 ^ ( A  +  1 ) )  -  1 ) )
80 coprm 12674 . . . . . . . 8  |-  ( ( 2  e.  Prime  /\  (
( 2 ^ ( A  +  1 ) )  -  1 )  e.  ZZ )  -> 
( -.  2  ||  ( ( 2 ^ ( A  +  1 ) )  -  1 )  <->  ( 2  gcd  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  =  1 ) )
8144, 20, 80sylancr 414 . . . . . . 7  |-  ( ph  ->  ( -.  2  ||  ( ( 2 ^ ( A  +  1 ) )  -  1 )  <->  ( 2  gcd  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  =  1 ) )
8279, 81mpbid 147 . . . . . 6  |-  ( ph  ->  ( 2  gcd  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  =  1 )
83 rpexp1i 12684 . . . . . . 7  |-  ( ( 2  e.  ZZ  /\  ( ( 2 ^ ( A  +  1 ) )  -  1 )  e.  ZZ  /\  ( A  +  1
)  e.  NN0 )  ->  ( ( 2  gcd  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  =  1  ->  ( ( 2 ^ ( A  + 
1 ) )  gcd  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  =  1 ) )
8449, 20, 5, 83mp3an2i 1376 . . . . . 6  |-  ( ph  ->  ( ( 2  gcd  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  =  1  ->  ( ( 2 ^ ( A  + 
1 ) )  gcd  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  =  1 ) )
8582, 84mpd 13 . . . . 5  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  gcd  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  =  1 )
8668, 85eqtrd 2262 . . . 4  |-  ( ph  ->  ( ( ( 2 ^ ( A  + 
1 ) )  - 
1 )  gcd  (
2 ^ ( A  +  1 ) ) )  =  1 )
87 coprmdvds 12622 . . . . 5  |-  ( ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  e.  ZZ  /\  ( 2 ^ ( A  +  1 ) )  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  ||  ( ( 2 ^ ( A  +  1 ) )  x.  B
)  /\  ( (
( 2 ^ ( A  +  1 ) )  -  1 )  gcd  ( 2 ^ ( A  +  1 ) ) )  =  1 )  ->  (
( 2 ^ ( A  +  1 ) )  -  1 ) 
||  B ) )
8820, 18, 45, 87syl3anc 1271 . . . 4  |-  ( ph  ->  ( ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  ||  ( ( 2 ^ ( A  +  1 ) )  x.  B
)  /\  ( (
( 2 ^ ( A  +  1 ) )  -  1 )  gcd  ( 2 ^ ( A  +  1 ) ) )  =  1 )  ->  (
( 2 ^ ( A  +  1 ) )  -  1 ) 
||  B ) )
8967, 86, 88mp2and 433 . . 3  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  -  1 )  ||  B )
90 nndivdvds 12315 . . . 4  |-  ( ( B  e.  NN  /\  ( ( 2 ^ ( A  +  1 ) )  -  1 )  e.  NN )  ->  ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  ||  B 
<->  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  e.  NN ) )
9122, 17, 90syl2anc 411 . . 3  |-  ( ph  ->  ( ( ( 2 ^ ( A  + 
1 ) )  - 
1 )  ||  B  <->  ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  e.  NN ) )
9289, 91mpbid 147 . 2  |-  ( ph  ->  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  e.  NN )
937, 17, 923jca 1201 1  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  e.  NN  /\  ( ( 2 ^ ( A  +  1 ) )  -  1 )  e.  NN  /\  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  e.  NN ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   class class class wbr 4083  (class class class)co 6007   CCcc 8005   RRcr 8006   1c1 8008    + caddc 8010    x. cmul 8012    < clt 8189    - cmin 8325    / cdiv 8827   NNcn 9118   2c2 9169   NN0cn0 9377   ZZcz 9454   ^cexp 10768    || cdvds 12306    gcd cgcd 12482   Primecprime 12637    sigma csgm 15663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127  ax-pre-suploc 8128  ax-addf 8129  ax-mulf 8130
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-disj 4060  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-of 6224  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-frec 6543  df-1o 6568  df-2o 6569  df-oadd 6572  df-er 6688  df-map 6805  df-pm 6806  df-en 6896  df-dom 6897  df-fin 6898  df-sup 7159  df-inf 7160  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-xnn0 9441  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-xneg 9976  df-xadd 9977  df-ioo 10096  df-ico 10098  df-icc 10099  df-fz 10213  df-fzo 10347  df-fl 10498  df-mod 10553  df-seqfrec 10678  df-exp 10769  df-fac 10956  df-bc 10978  df-ihash 11006  df-shft 11334  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-clim 11798  df-sumdc 11873  df-ef 12167  df-e 12168  df-dvds 12307  df-gcd 12483  df-prm 12638  df-pc 12816  df-rest 13282  df-topgen 13301  df-psmet 14515  df-xmet 14516  df-met 14517  df-bl 14518  df-mopn 14519  df-top 14680  df-topon 14693  df-bases 14725  df-ntr 14778  df-cn 14870  df-cnp 14871  df-tx 14935  df-cncf 15253  df-limced 15338  df-dvap 15339  df-relog 15540  df-rpcxp 15541  df-sgm 15664
This theorem is referenced by:  perfectlem2  15682
  Copyright terms: Public domain W3C validator