ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  perfectlem1 Unicode version

Theorem perfectlem1 15638
Description: Lemma for perfect 15640. (Contributed by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
perfectlem.1  |-  ( ph  ->  A  e.  NN )
perfectlem.2  |-  ( ph  ->  B  e.  NN )
perfectlem.3  |-  ( ph  ->  -.  2  ||  B
)
perfectlem.4  |-  ( ph  ->  ( 1  sigma  ( ( 2 ^ A )  x.  B ) )  =  ( 2  x.  ( ( 2 ^ A )  x.  B
) ) )
Assertion
Ref Expression
perfectlem1  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  e.  NN  /\  ( ( 2 ^ ( A  +  1 ) )  -  1 )  e.  NN  /\  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  e.  NN ) )

Proof of Theorem perfectlem1
StepHypRef Expression
1 2nn 9240 . . 3  |-  2  e.  NN
2 perfectlem.1 . . . . 5  |-  ( ph  ->  A  e.  NN )
32nnnn0d 9390 . . . 4  |-  ( ph  ->  A  e.  NN0 )
4 peano2nn0 9377 . . . 4  |-  ( A  e.  NN0  ->  ( A  +  1 )  e. 
NN0 )
53, 4syl 14 . . 3  |-  ( ph  ->  ( A  +  1 )  e.  NN0 )
6 nnexpcl 10741 . . 3  |-  ( ( 2  e.  NN  /\  ( A  +  1
)  e.  NN0 )  ->  ( 2 ^ ( A  +  1 ) )  e.  NN )
71, 5, 6sylancr 414 . 2  |-  ( ph  ->  ( 2 ^ ( A  +  1 ) )  e.  NN )
8 2re 9148 . . . 4  |-  2  e.  RR
92peano2nnd 9093 . . . 4  |-  ( ph  ->  ( A  +  1 )  e.  NN )
10 1lt2 9248 . . . . 5  |-  1  <  2
1110a1i 9 . . . 4  |-  ( ph  ->  1  <  2 )
12 expgt1 10766 . . . 4  |-  ( ( 2  e.  RR  /\  ( A  +  1
)  e.  NN  /\  1  <  2 )  -> 
1  <  ( 2 ^ ( A  + 
1 ) ) )
138, 9, 11, 12mp3an2i 1357 . . 3  |-  ( ph  ->  1  <  ( 2 ^ ( A  + 
1 ) ) )
14 1nn 9089 . . . 4  |-  1  e.  NN
15 nnsub 9117 . . . 4  |-  ( ( 1  e.  NN  /\  ( 2 ^ ( A  +  1 ) )  e.  NN )  ->  ( 1  < 
( 2 ^ ( A  +  1 ) )  <->  ( ( 2 ^ ( A  + 
1 ) )  - 
1 )  e.  NN ) )
1614, 7, 15sylancr 414 . . 3  |-  ( ph  ->  ( 1  <  (
2 ^ ( A  +  1 ) )  <-> 
( ( 2 ^ ( A  +  1 ) )  -  1 )  e.  NN ) )
1713, 16mpbid 147 . 2  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  -  1 )  e.  NN )
187nnzd 9536 . . . . . . 7  |-  ( ph  ->  ( 2 ^ ( A  +  1 ) )  e.  ZZ )
19 peano2zm 9452 . . . . . . 7  |-  ( ( 2 ^ ( A  +  1 ) )  e.  ZZ  ->  (
( 2 ^ ( A  +  1 ) )  -  1 )  e.  ZZ )
2018, 19syl 14 . . . . . 6  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  -  1 )  e.  ZZ )
21 1nn0 9353 . . . . . . . 8  |-  1  e.  NN0
22 perfectlem.2 . . . . . . . 8  |-  ( ph  ->  B  e.  NN )
23 sgmnncl 15627 . . . . . . . 8  |-  ( ( 1  e.  NN0  /\  B  e.  NN )  ->  ( 1  sigma  B )  e.  NN )
2421, 22, 23sylancr 414 . . . . . . 7  |-  ( ph  ->  ( 1  sigma  B )  e.  NN )
2524nnzd 9536 . . . . . 6  |-  ( ph  ->  ( 1  sigma  B )  e.  ZZ )
26 dvdsmul1 12290 . . . . . 6  |-  ( ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  e.  ZZ  /\  ( 1  sigma  B )  e.  ZZ )  -> 
( ( 2 ^ ( A  +  1 ) )  -  1 )  ||  ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  x.  ( 1  sigma  B ) ) )
2720, 25, 26syl2anc 411 . . . . 5  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  -  1 )  ||  ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  x.  ( 1  sigma  B ) ) )
28 2cn 9149 . . . . . . . . 9  |-  2  e.  CC
29 expp1 10735 . . . . . . . . 9  |-  ( ( 2  e.  CC  /\  A  e.  NN0 )  -> 
( 2 ^ ( A  +  1 ) )  =  ( ( 2 ^ A )  x.  2 ) )
3028, 3, 29sylancr 414 . . . . . . . 8  |-  ( ph  ->  ( 2 ^ ( A  +  1 ) )  =  ( ( 2 ^ A )  x.  2 ) )
31 nnexpcl 10741 . . . . . . . . . . 11  |-  ( ( 2  e.  NN  /\  A  e.  NN0 )  -> 
( 2 ^ A
)  e.  NN )
321, 3, 31sylancr 414 . . . . . . . . . 10  |-  ( ph  ->  ( 2 ^ A
)  e.  NN )
3332nncnd 9092 . . . . . . . . 9  |-  ( ph  ->  ( 2 ^ A
)  e.  CC )
34 mulcom 8096 . . . . . . . . 9  |-  ( ( ( 2 ^ A
)  e.  CC  /\  2  e.  CC )  ->  ( ( 2 ^ A )  x.  2 )  =  ( 2  x.  ( 2 ^ A ) ) )
3533, 28, 34sylancl 413 . . . . . . . 8  |-  ( ph  ->  ( ( 2 ^ A )  x.  2 )  =  ( 2  x.  ( 2 ^ A ) ) )
3630, 35eqtrd 2242 . . . . . . 7  |-  ( ph  ->  ( 2 ^ ( A  +  1 ) )  =  ( 2  x.  ( 2 ^ A ) ) )
3736oveq1d 5989 . . . . . 6  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  x.  B
)  =  ( ( 2  x.  ( 2 ^ A ) )  x.  B ) )
3828a1i 9 . . . . . . 7  |-  ( ph  ->  2  e.  CC )
3922nncnd 9092 . . . . . . 7  |-  ( ph  ->  B  e.  CC )
4038, 33, 39mulassd 8138 . . . . . 6  |-  ( ph  ->  ( ( 2  x.  ( 2 ^ A
) )  x.  B
)  =  ( 2  x.  ( ( 2 ^ A )  x.  B ) ) )
41 ax-1cn 8060 . . . . . . . . 9  |-  1  e.  CC
4241a1i 9 . . . . . . . 8  |-  ( ph  ->  1  e.  CC )
43 perfectlem.3 . . . . . . . . . 10  |-  ( ph  ->  -.  2  ||  B
)
44 2prm 12615 . . . . . . . . . . 11  |-  2  e.  Prime
4522nnzd 9536 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  ZZ )
46 coprm 12632 . . . . . . . . . . 11  |-  ( ( 2  e.  Prime  /\  B  e.  ZZ )  ->  ( -.  2  ||  B  <->  ( 2  gcd  B )  =  1 ) )
4744, 45, 46sylancr 414 . . . . . . . . . 10  |-  ( ph  ->  ( -.  2  ||  B 
<->  ( 2  gcd  B
)  =  1 ) )
4843, 47mpbid 147 . . . . . . . . 9  |-  ( ph  ->  ( 2  gcd  B
)  =  1 )
49 2z 9442 . . . . . . . . . 10  |-  2  e.  ZZ
50 rpexp1i 12642 . . . . . . . . . 10  |-  ( ( 2  e.  ZZ  /\  B  e.  ZZ  /\  A  e.  NN0 )  ->  (
( 2  gcd  B
)  =  1  -> 
( ( 2 ^ A )  gcd  B
)  =  1 ) )
5149, 45, 3, 50mp3an2i 1357 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  gcd 
B )  =  1  ->  ( ( 2 ^ A )  gcd 
B )  =  1 ) )
5248, 51mpd 13 . . . . . . . 8  |-  ( ph  ->  ( ( 2 ^ A )  gcd  B
)  =  1 )
53 sgmmul 15635 . . . . . . . 8  |-  ( ( 1  e.  CC  /\  ( ( 2 ^ A )  e.  NN  /\  B  e.  NN  /\  ( ( 2 ^ A )  gcd  B
)  =  1 ) )  ->  ( 1 
sigma  ( ( 2 ^ A )  x.  B
) )  =  ( ( 1  sigma  ( 2 ^ A ) )  x.  ( 1  sigma  B ) ) )
5442, 32, 22, 52, 53syl13anc 1254 . . . . . . 7  |-  ( ph  ->  ( 1  sigma  ( ( 2 ^ A )  x.  B ) )  =  ( ( 1 
sigma  ( 2 ^ A
) )  x.  (
1  sigma  B ) ) )
55 perfectlem.4 . . . . . . 7  |-  ( ph  ->  ( 1  sigma  ( ( 2 ^ A )  x.  B ) )  =  ( 2  x.  ( ( 2 ^ A )  x.  B
) ) )
562nncnd 9092 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  CC )
57 pncan 8320 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( ( A  + 
1 )  -  1 )  =  A )
5856, 41, 57sylancl 413 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A  + 
1 )  -  1 )  =  A )
5958oveq2d 5990 . . . . . . . . . 10  |-  ( ph  ->  ( 2 ^ (
( A  +  1 )  -  1 ) )  =  ( 2 ^ A ) )
6059oveq2d 5990 . . . . . . . . 9  |-  ( ph  ->  ( 1  sigma  ( 2 ^ ( ( A  +  1 )  - 
1 ) ) )  =  ( 1  sigma 
( 2 ^ A
) ) )
61 1sgm2ppw 15634 . . . . . . . . . 10  |-  ( ( A  +  1 )  e.  NN  ->  (
1  sigma  ( 2 ^ ( ( A  + 
1 )  -  1 ) ) )  =  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )
629, 61syl 14 . . . . . . . . 9  |-  ( ph  ->  ( 1  sigma  ( 2 ^ ( ( A  +  1 )  - 
1 ) ) )  =  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) )
6360, 62eqtr3d 2244 . . . . . . . 8  |-  ( ph  ->  ( 1  sigma  ( 2 ^ A ) )  =  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) )
6463oveq1d 5989 . . . . . . 7  |-  ( ph  ->  ( ( 1  sigma 
( 2 ^ A
) )  x.  (
1  sigma  B ) )  =  ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  x.  ( 1  sigma  B ) ) )
6554, 55, 643eqtr3d 2250 . . . . . 6  |-  ( ph  ->  ( 2  x.  (
( 2 ^ A
)  x.  B ) )  =  ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  x.  ( 1  sigma  B ) ) )
6637, 40, 653eqtrd 2246 . . . . 5  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  x.  B
)  =  ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  x.  ( 1  sigma  B ) ) )
6727, 66breqtrrd 4090 . . . 4  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  -  1 )  ||  ( ( 2 ^ ( A  +  1 ) )  x.  B ) )
6820, 18gcdcomd 12461 . . . . 5  |-  ( ph  ->  ( ( ( 2 ^ ( A  + 
1 ) )  - 
1 )  gcd  (
2 ^ ( A  +  1 ) ) )  =  ( ( 2 ^ ( A  +  1 ) )  gcd  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )
69 iddvdsexp 12292 . . . . . . . . 9  |-  ( ( 2  e.  ZZ  /\  ( A  +  1
)  e.  NN )  ->  2  ||  (
2 ^ ( A  +  1 ) ) )
7049, 9, 69sylancr 414 . . . . . . . 8  |-  ( ph  ->  2  ||  ( 2 ^ ( A  + 
1 ) ) )
71 n2dvds1 12389 . . . . . . . . . 10  |-  -.  2  ||  1
7249a1i 9 . . . . . . . . . . . 12  |-  ( ph  ->  2  e.  ZZ )
73 1zzd 9441 . . . . . . . . . . . 12  |-  ( ph  ->  1  e.  ZZ )
7472, 18, 733jca 1182 . . . . . . . . . . 11  |-  ( ph  ->  ( 2  e.  ZZ  /\  ( 2 ^ ( A  +  1 ) )  e.  ZZ  /\  1  e.  ZZ )
)
75 dvdssub2 12312 . . . . . . . . . . 11  |-  ( ( ( 2  e.  ZZ  /\  ( 2 ^ ( A  +  1 ) )  e.  ZZ  /\  1  e.  ZZ )  /\  2  ||  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  ( 2  ||  ( 2 ^ ( A  +  1 ) )  <->  2  ||  1
) )
7674, 75sylan 283 . . . . . . . . . 10  |-  ( (
ph  /\  2  ||  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  (
2  ||  ( 2 ^ ( A  + 
1 ) )  <->  2  ||  1 ) )
7771, 76mtbiri 679 . . . . . . . . 9  |-  ( (
ph  /\  2  ||  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  -.  2  ||  ( 2 ^ ( A  +  1 ) ) )
7877ex 115 . . . . . . . 8  |-  ( ph  ->  ( 2  ||  (
( 2 ^ ( A  +  1 ) )  -  1 )  ->  -.  2  ||  ( 2 ^ ( A  +  1 ) ) ) )
7970, 78mt2d 628 . . . . . . 7  |-  ( ph  ->  -.  2  ||  (
( 2 ^ ( A  +  1 ) )  -  1 ) )
80 coprm 12632 . . . . . . . 8  |-  ( ( 2  e.  Prime  /\  (
( 2 ^ ( A  +  1 ) )  -  1 )  e.  ZZ )  -> 
( -.  2  ||  ( ( 2 ^ ( A  +  1 ) )  -  1 )  <->  ( 2  gcd  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  =  1 ) )
8144, 20, 80sylancr 414 . . . . . . 7  |-  ( ph  ->  ( -.  2  ||  ( ( 2 ^ ( A  +  1 ) )  -  1 )  <->  ( 2  gcd  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  =  1 ) )
8279, 81mpbid 147 . . . . . 6  |-  ( ph  ->  ( 2  gcd  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  =  1 )
83 rpexp1i 12642 . . . . . . 7  |-  ( ( 2  e.  ZZ  /\  ( ( 2 ^ ( A  +  1 ) )  -  1 )  e.  ZZ  /\  ( A  +  1
)  e.  NN0 )  ->  ( ( 2  gcd  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  =  1  ->  ( ( 2 ^ ( A  + 
1 ) )  gcd  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  =  1 ) )
8449, 20, 5, 83mp3an2i 1357 . . . . . 6  |-  ( ph  ->  ( ( 2  gcd  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  =  1  ->  ( ( 2 ^ ( A  + 
1 ) )  gcd  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  =  1 ) )
8582, 84mpd 13 . . . . 5  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  gcd  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  =  1 )
8668, 85eqtrd 2242 . . . 4  |-  ( ph  ->  ( ( ( 2 ^ ( A  + 
1 ) )  - 
1 )  gcd  (
2 ^ ( A  +  1 ) ) )  =  1 )
87 coprmdvds 12580 . . . . 5  |-  ( ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  e.  ZZ  /\  ( 2 ^ ( A  +  1 ) )  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  ||  ( ( 2 ^ ( A  +  1 ) )  x.  B
)  /\  ( (
( 2 ^ ( A  +  1 ) )  -  1 )  gcd  ( 2 ^ ( A  +  1 ) ) )  =  1 )  ->  (
( 2 ^ ( A  +  1 ) )  -  1 ) 
||  B ) )
8820, 18, 45, 87syl3anc 1252 . . . 4  |-  ( ph  ->  ( ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  ||  ( ( 2 ^ ( A  +  1 ) )  x.  B
)  /\  ( (
( 2 ^ ( A  +  1 ) )  -  1 )  gcd  ( 2 ^ ( A  +  1 ) ) )  =  1 )  ->  (
( 2 ^ ( A  +  1 ) )  -  1 ) 
||  B ) )
8967, 86, 88mp2and 433 . . 3  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  -  1 )  ||  B )
90 nndivdvds 12273 . . . 4  |-  ( ( B  e.  NN  /\  ( ( 2 ^ ( A  +  1 ) )  -  1 )  e.  NN )  ->  ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  ||  B 
<->  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  e.  NN ) )
9122, 17, 90syl2anc 411 . . 3  |-  ( ph  ->  ( ( ( 2 ^ ( A  + 
1 ) )  - 
1 )  ||  B  <->  ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  e.  NN ) )
9289, 91mpbid 147 . 2  |-  ( ph  ->  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  e.  NN )
937, 17, 923jca 1182 1  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  e.  NN  /\  ( ( 2 ^ ( A  +  1 ) )  -  1 )  e.  NN  /\  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  e.  NN ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 983    = wceq 1375    e. wcel 2180   class class class wbr 4062  (class class class)co 5974   CCcc 7965   RRcr 7966   1c1 7968    + caddc 7970    x. cmul 7972    < clt 8149    - cmin 8285    / cdiv 8787   NNcn 9078   2c2 9129   NN0cn0 9337   ZZcz 9414   ^cexp 10727    || cdvds 12264    gcd cgcd 12440   Primecprime 12595    sigma csgm 15620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087  ax-pre-suploc 8088  ax-addf 8089  ax-mulf 8090
This theorem depends on definitions:  df-bi 117  df-stab 835  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-disj 4039  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-of 6188  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-frec 6507  df-1o 6532  df-2o 6533  df-oadd 6536  df-er 6650  df-map 6767  df-pm 6768  df-en 6858  df-dom 6859  df-fin 6860  df-sup 7119  df-inf 7120  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-xnn0 9401  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-xneg 9936  df-xadd 9937  df-ioo 10056  df-ico 10058  df-icc 10059  df-fz 10173  df-fzo 10307  df-fl 10457  df-mod 10512  df-seqfrec 10637  df-exp 10728  df-fac 10915  df-bc 10937  df-ihash 10965  df-shft 11292  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-clim 11756  df-sumdc 11831  df-ef 12125  df-e 12126  df-dvds 12265  df-gcd 12441  df-prm 12596  df-pc 12774  df-rest 13240  df-topgen 13259  df-psmet 14472  df-xmet 14473  df-met 14474  df-bl 14475  df-mopn 14476  df-top 14637  df-topon 14650  df-bases 14682  df-ntr 14735  df-cn 14827  df-cnp 14828  df-tx 14892  df-cncf 15210  df-limced 15295  df-dvap 15296  df-relog 15497  df-rpcxp 15498  df-sgm 15621
This theorem is referenced by:  perfectlem2  15639
  Copyright terms: Public domain W3C validator