| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > perfectlem1 | Unicode version | ||
| Description: Lemma for perfect 15517. (Contributed by Mario Carneiro, 7-Jun-2016.) |
| Ref | Expression |
|---|---|
| perfectlem.1 |
|
| perfectlem.2 |
|
| perfectlem.3 |
|
| perfectlem.4 |
|
| Ref | Expression |
|---|---|
| perfectlem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn 9205 |
. . 3
| |
| 2 | perfectlem.1 |
. . . . 5
| |
| 3 | 2 | nnnn0d 9355 |
. . . 4
|
| 4 | peano2nn0 9342 |
. . . 4
| |
| 5 | 3, 4 | syl 14 |
. . 3
|
| 6 | nnexpcl 10704 |
. . 3
| |
| 7 | 1, 5, 6 | sylancr 414 |
. 2
|
| 8 | 2re 9113 |
. . . 4
| |
| 9 | 2 | peano2nnd 9058 |
. . . 4
|
| 10 | 1lt2 9213 |
. . . . 5
| |
| 11 | 10 | a1i 9 |
. . . 4
|
| 12 | expgt1 10729 |
. . . 4
| |
| 13 | 8, 9, 11, 12 | mp3an2i 1355 |
. . 3
|
| 14 | 1nn 9054 |
. . . 4
| |
| 15 | nnsub 9082 |
. . . 4
| |
| 16 | 14, 7, 15 | sylancr 414 |
. . 3
|
| 17 | 13, 16 | mpbid 147 |
. 2
|
| 18 | 7 | nnzd 9501 |
. . . . . . 7
|
| 19 | peano2zm 9417 |
. . . . . . 7
| |
| 20 | 18, 19 | syl 14 |
. . . . . 6
|
| 21 | 1nn0 9318 |
. . . . . . . 8
| |
| 22 | perfectlem.2 |
. . . . . . . 8
| |
| 23 | sgmnncl 15504 |
. . . . . . . 8
| |
| 24 | 21, 22, 23 | sylancr 414 |
. . . . . . 7
|
| 25 | 24 | nnzd 9501 |
. . . . . 6
|
| 26 | dvdsmul1 12168 |
. . . . . 6
| |
| 27 | 20, 25, 26 | syl2anc 411 |
. . . . 5
|
| 28 | 2cn 9114 |
. . . . . . . . 9
| |
| 29 | expp1 10698 |
. . . . . . . . 9
| |
| 30 | 28, 3, 29 | sylancr 414 |
. . . . . . . 8
|
| 31 | nnexpcl 10704 |
. . . . . . . . . . 11
| |
| 32 | 1, 3, 31 | sylancr 414 |
. . . . . . . . . 10
|
| 33 | 32 | nncnd 9057 |
. . . . . . . . 9
|
| 34 | mulcom 8061 |
. . . . . . . . 9
| |
| 35 | 33, 28, 34 | sylancl 413 |
. . . . . . . 8
|
| 36 | 30, 35 | eqtrd 2239 |
. . . . . . 7
|
| 37 | 36 | oveq1d 5966 |
. . . . . 6
|
| 38 | 28 | a1i 9 |
. . . . . . 7
|
| 39 | 22 | nncnd 9057 |
. . . . . . 7
|
| 40 | 38, 33, 39 | mulassd 8103 |
. . . . . 6
|
| 41 | ax-1cn 8025 |
. . . . . . . . 9
| |
| 42 | 41 | a1i 9 |
. . . . . . . 8
|
| 43 | perfectlem.3 |
. . . . . . . . . 10
| |
| 44 | 2prm 12493 |
. . . . . . . . . . 11
| |
| 45 | 22 | nnzd 9501 |
. . . . . . . . . . 11
|
| 46 | coprm 12510 |
. . . . . . . . . . 11
| |
| 47 | 44, 45, 46 | sylancr 414 |
. . . . . . . . . 10
|
| 48 | 43, 47 | mpbid 147 |
. . . . . . . . 9
|
| 49 | 2z 9407 |
. . . . . . . . . 10
| |
| 50 | rpexp1i 12520 |
. . . . . . . . . 10
| |
| 51 | 49, 45, 3, 50 | mp3an2i 1355 |
. . . . . . . . 9
|
| 52 | 48, 51 | mpd 13 |
. . . . . . . 8
|
| 53 | sgmmul 15512 |
. . . . . . . 8
| |
| 54 | 42, 32, 22, 52, 53 | syl13anc 1252 |
. . . . . . 7
|
| 55 | perfectlem.4 |
. . . . . . 7
| |
| 56 | 2 | nncnd 9057 |
. . . . . . . . . . . 12
|
| 57 | pncan 8285 |
. . . . . . . . . . . 12
| |
| 58 | 56, 41, 57 | sylancl 413 |
. . . . . . . . . . 11
|
| 59 | 58 | oveq2d 5967 |
. . . . . . . . . 10
|
| 60 | 59 | oveq2d 5967 |
. . . . . . . . 9
|
| 61 | 1sgm2ppw 15511 |
. . . . . . . . . 10
| |
| 62 | 9, 61 | syl 14 |
. . . . . . . . 9
|
| 63 | 60, 62 | eqtr3d 2241 |
. . . . . . . 8
|
| 64 | 63 | oveq1d 5966 |
. . . . . . 7
|
| 65 | 54, 55, 64 | 3eqtr3d 2247 |
. . . . . 6
|
| 66 | 37, 40, 65 | 3eqtrd 2243 |
. . . . 5
|
| 67 | 27, 66 | breqtrrd 4075 |
. . . 4
|
| 68 | 20, 18 | gcdcomd 12339 |
. . . . 5
|
| 69 | iddvdsexp 12170 |
. . . . . . . . 9
| |
| 70 | 49, 9, 69 | sylancr 414 |
. . . . . . . 8
|
| 71 | n2dvds1 12267 |
. . . . . . . . . 10
| |
| 72 | 49 | a1i 9 |
. . . . . . . . . . . 12
|
| 73 | 1zzd 9406 |
. . . . . . . . . . . 12
| |
| 74 | 72, 18, 73 | 3jca 1180 |
. . . . . . . . . . 11
|
| 75 | dvdssub2 12190 |
. . . . . . . . . . 11
| |
| 76 | 74, 75 | sylan 283 |
. . . . . . . . . 10
|
| 77 | 71, 76 | mtbiri 677 |
. . . . . . . . 9
|
| 78 | 77 | ex 115 |
. . . . . . . 8
|
| 79 | 70, 78 | mt2d 626 |
. . . . . . 7
|
| 80 | coprm 12510 |
. . . . . . . 8
| |
| 81 | 44, 20, 80 | sylancr 414 |
. . . . . . 7
|
| 82 | 79, 81 | mpbid 147 |
. . . . . 6
|
| 83 | rpexp1i 12520 |
. . . . . . 7
| |
| 84 | 49, 20, 5, 83 | mp3an2i 1355 |
. . . . . 6
|
| 85 | 82, 84 | mpd 13 |
. . . . 5
|
| 86 | 68, 85 | eqtrd 2239 |
. . . 4
|
| 87 | coprmdvds 12458 |
. . . . 5
| |
| 88 | 20, 18, 45, 87 | syl3anc 1250 |
. . . 4
|
| 89 | 67, 86, 88 | mp2and 433 |
. . 3
|
| 90 | nndivdvds 12151 |
. . . 4
| |
| 91 | 22, 17, 90 | syl2anc 411 |
. . 3
|
| 92 | 89, 91 | mpbid 147 |
. 2
|
| 93 | 7, 17, 92 | 3jca 1180 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 ax-arch 8051 ax-caucvg 8052 ax-pre-suploc 8053 ax-addf 8054 ax-mulf 8055 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-disj 4024 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-isom 5285 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-of 6165 df-1st 6233 df-2nd 6234 df-recs 6398 df-irdg 6463 df-frec 6484 df-1o 6509 df-2o 6510 df-oadd 6513 df-er 6627 df-map 6744 df-pm 6745 df-en 6835 df-dom 6836 df-fin 6837 df-sup 7093 df-inf 7094 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-n0 9303 df-xnn0 9366 df-z 9380 df-uz 9656 df-q 9748 df-rp 9783 df-xneg 9901 df-xadd 9902 df-ioo 10021 df-ico 10023 df-icc 10024 df-fz 10138 df-fzo 10272 df-fl 10420 df-mod 10475 df-seqfrec 10600 df-exp 10691 df-fac 10878 df-bc 10900 df-ihash 10928 df-shft 11170 df-cj 11197 df-re 11198 df-im 11199 df-rsqrt 11353 df-abs 11354 df-clim 11634 df-sumdc 11709 df-ef 12003 df-e 12004 df-dvds 12143 df-gcd 12319 df-prm 12474 df-pc 12652 df-rest 13117 df-topgen 13136 df-psmet 14349 df-xmet 14350 df-met 14351 df-bl 14352 df-mopn 14353 df-top 14514 df-topon 14527 df-bases 14559 df-ntr 14612 df-cn 14704 df-cnp 14705 df-tx 14769 df-cncf 15087 df-limced 15172 df-dvap 15173 df-relog 15374 df-rpcxp 15375 df-sgm 15498 |
| This theorem is referenced by: perfectlem2 15516 |
| Copyright terms: Public domain | W3C validator |