ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumdvds GIF version

Theorem fsumdvds 12361
Description: If every term in a sum is divisible by 𝑁, then so is the sum. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypotheses
Ref Expression
fsumdvds.1 (𝜑𝐴 ∈ Fin)
fsumdvds.2 (𝜑𝑁 ∈ ℤ)
fsumdvds.3 ((𝜑𝑘𝐴) → 𝐵 ∈ ℤ)
fsumdvds.4 ((𝜑𝑘𝐴) → 𝑁𝐵)
Assertion
Ref Expression
fsumdvds (𝜑𝑁 ∥ Σ𝑘𝐴 𝐵)
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsumdvds
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 0z 9465 . . . 4 0 ∈ ℤ
2 dvds0 12325 . . . 4 (0 ∈ ℤ → 0 ∥ 0)
31, 2mp1i 10 . . 3 ((𝜑𝑁 = 0) → 0 ∥ 0)
4 simpr 110 . . 3 ((𝜑𝑁 = 0) → 𝑁 = 0)
5 simplr 528 . . . . . . 7 (((𝜑𝑁 = 0) ∧ 𝑘𝐴) → 𝑁 = 0)
6 fsumdvds.4 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝑁𝐵)
76adantlr 477 . . . . . . 7 (((𝜑𝑁 = 0) ∧ 𝑘𝐴) → 𝑁𝐵)
85, 7eqbrtrrd 4107 . . . . . 6 (((𝜑𝑁 = 0) ∧ 𝑘𝐴) → 0 ∥ 𝐵)
9 fsumdvds.3 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ∈ ℤ)
109adantlr 477 . . . . . . 7 (((𝜑𝑁 = 0) ∧ 𝑘𝐴) → 𝐵 ∈ ℤ)
11 0dvds 12330 . . . . . . 7 (𝐵 ∈ ℤ → (0 ∥ 𝐵𝐵 = 0))
1210, 11syl 14 . . . . . 6 (((𝜑𝑁 = 0) ∧ 𝑘𝐴) → (0 ∥ 𝐵𝐵 = 0))
138, 12mpbid 147 . . . . 5 (((𝜑𝑁 = 0) ∧ 𝑘𝐴) → 𝐵 = 0)
1413sumeq2dv 11887 . . . 4 ((𝜑𝑁 = 0) → Σ𝑘𝐴 𝐵 = Σ𝑘𝐴 0)
15 fsumdvds.1 . . . . . . 7 (𝜑𝐴 ∈ Fin)
1615adantr 276 . . . . . 6 ((𝜑𝑁 = 0) → 𝐴 ∈ Fin)
1716olcd 739 . . . . 5 ((𝜑𝑁 = 0) → ((0 ∈ ℤ ∧ 𝐴 ⊆ (ℤ‘0) ∧ ∀𝑗 ∈ (ℤ‘0)DECID 𝑗𝐴) ∨ 𝐴 ∈ Fin))
18 isumz 11908 . . . . 5 (((0 ∈ ℤ ∧ 𝐴 ⊆ (ℤ‘0) ∧ ∀𝑗 ∈ (ℤ‘0)DECID 𝑗𝐴) ∨ 𝐴 ∈ Fin) → Σ𝑘𝐴 0 = 0)
1917, 18syl 14 . . . 4 ((𝜑𝑁 = 0) → Σ𝑘𝐴 0 = 0)
2014, 19eqtrd 2262 . . 3 ((𝜑𝑁 = 0) → Σ𝑘𝐴 𝐵 = 0)
213, 4, 203brtr4d 4115 . 2 ((𝜑𝑁 = 0) → 𝑁 ∥ Σ𝑘𝐴 𝐵)
2215adantr 276 . . . . 5 ((𝜑𝑁 ≠ 0) → 𝐴 ∈ Fin)
23 fsumdvds.2 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
2423adantr 276 . . . . . 6 ((𝜑𝑁 ≠ 0) → 𝑁 ∈ ℤ)
2524zcnd 9578 . . . . 5 ((𝜑𝑁 ≠ 0) → 𝑁 ∈ ℂ)
269adantlr 477 . . . . . 6 (((𝜑𝑁 ≠ 0) ∧ 𝑘𝐴) → 𝐵 ∈ ℤ)
2726zcnd 9578 . . . . 5 (((𝜑𝑁 ≠ 0) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
28 zapne 9529 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑁 # 0 ↔ 𝑁 ≠ 0))
2923, 1, 28sylancl 413 . . . . . 6 (𝜑 → (𝑁 # 0 ↔ 𝑁 ≠ 0))
3029biimpar 297 . . . . 5 ((𝜑𝑁 ≠ 0) → 𝑁 # 0)
3122, 25, 27, 30fsumdivapc 11969 . . . 4 ((𝜑𝑁 ≠ 0) → (Σ𝑘𝐴 𝐵 / 𝑁) = Σ𝑘𝐴 (𝐵 / 𝑁))
326adantlr 477 . . . . . 6 (((𝜑𝑁 ≠ 0) ∧ 𝑘𝐴) → 𝑁𝐵)
3324adantr 276 . . . . . . 7 (((𝜑𝑁 ≠ 0) ∧ 𝑘𝐴) → 𝑁 ∈ ℤ)
34 simplr 528 . . . . . . 7 (((𝜑𝑁 ≠ 0) ∧ 𝑘𝐴) → 𝑁 ≠ 0)
35 dvdsval2 12309 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ 𝐵 ∈ ℤ) → (𝑁𝐵 ↔ (𝐵 / 𝑁) ∈ ℤ))
3633, 34, 26, 35syl3anc 1271 . . . . . 6 (((𝜑𝑁 ≠ 0) ∧ 𝑘𝐴) → (𝑁𝐵 ↔ (𝐵 / 𝑁) ∈ ℤ))
3732, 36mpbid 147 . . . . 5 (((𝜑𝑁 ≠ 0) ∧ 𝑘𝐴) → (𝐵 / 𝑁) ∈ ℤ)
3822, 37fsumzcl 11921 . . . 4 ((𝜑𝑁 ≠ 0) → Σ𝑘𝐴 (𝐵 / 𝑁) ∈ ℤ)
3931, 38eqeltrd 2306 . . 3 ((𝜑𝑁 ≠ 0) → (Σ𝑘𝐴 𝐵 / 𝑁) ∈ ℤ)
40 simpr 110 . . . 4 ((𝜑𝑁 ≠ 0) → 𝑁 ≠ 0)
4115, 9fsumzcl 11921 . . . . 5 (𝜑 → Σ𝑘𝐴 𝐵 ∈ ℤ)
4241adantr 276 . . . 4 ((𝜑𝑁 ≠ 0) → Σ𝑘𝐴 𝐵 ∈ ℤ)
43 dvdsval2 12309 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ Σ𝑘𝐴 𝐵 ∈ ℤ) → (𝑁 ∥ Σ𝑘𝐴 𝐵 ↔ (Σ𝑘𝐴 𝐵 / 𝑁) ∈ ℤ))
4424, 40, 42, 43syl3anc 1271 . . 3 ((𝜑𝑁 ≠ 0) → (𝑁 ∥ Σ𝑘𝐴 𝐵 ↔ (Σ𝑘𝐴 𝐵 / 𝑁) ∈ ℤ))
4539, 44mpbird 167 . 2 ((𝜑𝑁 ≠ 0) → 𝑁 ∥ Σ𝑘𝐴 𝐵)
46 zdceq 9530 . . . 4 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
4723, 1, 46sylancl 413 . . 3 (𝜑DECID 𝑁 = 0)
48 dcne 2411 . . 3 (DECID 𝑁 = 0 ↔ (𝑁 = 0 ∨ 𝑁 ≠ 0))
4947, 48sylib 122 . 2 (𝜑 → (𝑁 = 0 ∨ 𝑁 ≠ 0))
5021, 45, 49mpjaodan 803 1 (𝜑𝑁 ∥ Σ𝑘𝐴 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 713  DECID wdc 839  w3a 1002   = wceq 1395  wcel 2200  wne 2400  wral 2508  wss 3197   class class class wbr 4083  cfv 5318  (class class class)co 6007  Fincfn 6895  0cc0 8007   # cap 8736   / cdiv 8827  cz 9454  cuz 9730  Σcsu 11872  cdvds 12306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-frec 6543  df-1o 6568  df-oadd 6572  df-er 6688  df-en 6896  df-dom 6897  df-fin 6898  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-fz 10213  df-fzo 10347  df-seqfrec 10678  df-exp 10769  df-ihash 11006  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-clim 11798  df-sumdc 11873  df-dvds 12307
This theorem is referenced by:  3dvds  12383
  Copyright terms: Public domain W3C validator