| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fsumdvds | GIF version | ||
| Description: If every term in a sum is divisible by 𝑁, then so is the sum. (Contributed by Mario Carneiro, 17-Jan-2015.) |
| Ref | Expression |
|---|---|
| fsumdvds.1 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fsumdvds.2 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| fsumdvds.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℤ) |
| fsumdvds.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑁 ∥ 𝐵) |
| Ref | Expression |
|---|---|
| fsumdvds | ⊢ (𝜑 → 𝑁 ∥ Σ𝑘 ∈ 𝐴 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 9337 | . . . 4 ⊢ 0 ∈ ℤ | |
| 2 | dvds0 11971 | . . . 4 ⊢ (0 ∈ ℤ → 0 ∥ 0) | |
| 3 | 1, 2 | mp1i 10 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = 0) → 0 ∥ 0) |
| 4 | simpr 110 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = 0) → 𝑁 = 0) | |
| 5 | simplr 528 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑁 = 0) ∧ 𝑘 ∈ 𝐴) → 𝑁 = 0) | |
| 6 | fsumdvds.4 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑁 ∥ 𝐵) | |
| 7 | 6 | adantlr 477 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑁 = 0) ∧ 𝑘 ∈ 𝐴) → 𝑁 ∥ 𝐵) |
| 8 | 5, 7 | eqbrtrrd 4057 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑁 = 0) ∧ 𝑘 ∈ 𝐴) → 0 ∥ 𝐵) |
| 9 | fsumdvds.3 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℤ) | |
| 10 | 9 | adantlr 477 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑁 = 0) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℤ) |
| 11 | 0dvds 11976 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → (0 ∥ 𝐵 ↔ 𝐵 = 0)) | |
| 12 | 10, 11 | syl 14 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑁 = 0) ∧ 𝑘 ∈ 𝐴) → (0 ∥ 𝐵 ↔ 𝐵 = 0)) |
| 13 | 8, 12 | mpbid 147 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 = 0) ∧ 𝑘 ∈ 𝐴) → 𝐵 = 0) |
| 14 | 13 | sumeq2dv 11533 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 = 0) → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 0) |
| 15 | fsumdvds.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 16 | 15 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 = 0) → 𝐴 ∈ Fin) |
| 17 | 16 | olcd 735 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 = 0) → ((0 ∈ ℤ ∧ 𝐴 ⊆ (ℤ≥‘0) ∧ ∀𝑗 ∈ (ℤ≥‘0)DECID 𝑗 ∈ 𝐴) ∨ 𝐴 ∈ Fin)) |
| 18 | isumz 11554 | . . . . 5 ⊢ (((0 ∈ ℤ ∧ 𝐴 ⊆ (ℤ≥‘0) ∧ ∀𝑗 ∈ (ℤ≥‘0)DECID 𝑗 ∈ 𝐴) ∨ 𝐴 ∈ Fin) → Σ𝑘 ∈ 𝐴 0 = 0) | |
| 19 | 17, 18 | syl 14 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 = 0) → Σ𝑘 ∈ 𝐴 0 = 0) |
| 20 | 14, 19 | eqtrd 2229 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = 0) → Σ𝑘 ∈ 𝐴 𝐵 = 0) |
| 21 | 3, 4, 20 | 3brtr4d 4065 | . 2 ⊢ ((𝜑 ∧ 𝑁 = 0) → 𝑁 ∥ Σ𝑘 ∈ 𝐴 𝐵) |
| 22 | 15 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ≠ 0) → 𝐴 ∈ Fin) |
| 23 | fsumdvds.2 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 24 | 23 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ≠ 0) → 𝑁 ∈ ℤ) |
| 25 | 24 | zcnd 9449 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ≠ 0) → 𝑁 ∈ ℂ) |
| 26 | 9 | adantlr 477 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℤ) |
| 27 | 26 | zcnd 9449 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 28 | zapne 9400 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑁 # 0 ↔ 𝑁 ≠ 0)) | |
| 29 | 23, 1, 28 | sylancl 413 | . . . . . 6 ⊢ (𝜑 → (𝑁 # 0 ↔ 𝑁 ≠ 0)) |
| 30 | 29 | biimpar 297 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ≠ 0) → 𝑁 # 0) |
| 31 | 22, 25, 27, 30 | fsumdivapc 11615 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ≠ 0) → (Σ𝑘 ∈ 𝐴 𝐵 / 𝑁) = Σ𝑘 ∈ 𝐴 (𝐵 / 𝑁)) |
| 32 | 6 | adantlr 477 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ 𝐴) → 𝑁 ∥ 𝐵) |
| 33 | 24 | adantr 276 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ 𝐴) → 𝑁 ∈ ℤ) |
| 34 | simplr 528 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ 𝐴) → 𝑁 ≠ 0) | |
| 35 | dvdsval2 11955 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ 𝐵 ∈ ℤ) → (𝑁 ∥ 𝐵 ↔ (𝐵 / 𝑁) ∈ ℤ)) | |
| 36 | 33, 34, 26, 35 | syl3anc 1249 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ 𝐴) → (𝑁 ∥ 𝐵 ↔ (𝐵 / 𝑁) ∈ ℤ)) |
| 37 | 32, 36 | mpbid 147 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ 𝐴) → (𝐵 / 𝑁) ∈ ℤ) |
| 38 | 22, 37 | fsumzcl 11567 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ≠ 0) → Σ𝑘 ∈ 𝐴 (𝐵 / 𝑁) ∈ ℤ) |
| 39 | 31, 38 | eqeltrd 2273 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ≠ 0) → (Σ𝑘 ∈ 𝐴 𝐵 / 𝑁) ∈ ℤ) |
| 40 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ≠ 0) → 𝑁 ≠ 0) | |
| 41 | 15, 9 | fsumzcl 11567 | . . . . 5 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ ℤ) |
| 42 | 41 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ≠ 0) → Σ𝑘 ∈ 𝐴 𝐵 ∈ ℤ) |
| 43 | dvdsval2 11955 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ Σ𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → (𝑁 ∥ Σ𝑘 ∈ 𝐴 𝐵 ↔ (Σ𝑘 ∈ 𝐴 𝐵 / 𝑁) ∈ ℤ)) | |
| 44 | 24, 40, 42, 43 | syl3anc 1249 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ≠ 0) → (𝑁 ∥ Σ𝑘 ∈ 𝐴 𝐵 ↔ (Σ𝑘 ∈ 𝐴 𝐵 / 𝑁) ∈ ℤ)) |
| 45 | 39, 44 | mpbird 167 | . 2 ⊢ ((𝜑 ∧ 𝑁 ≠ 0) → 𝑁 ∥ Σ𝑘 ∈ 𝐴 𝐵) |
| 46 | zdceq 9401 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0) | |
| 47 | 23, 1, 46 | sylancl 413 | . . 3 ⊢ (𝜑 → DECID 𝑁 = 0) |
| 48 | dcne 2378 | . . 3 ⊢ (DECID 𝑁 = 0 ↔ (𝑁 = 0 ∨ 𝑁 ≠ 0)) | |
| 49 | 47, 48 | sylib 122 | . 2 ⊢ (𝜑 → (𝑁 = 0 ∨ 𝑁 ≠ 0)) |
| 50 | 21, 45, 49 | mpjaodan 799 | 1 ⊢ (𝜑 → 𝑁 ∥ Σ𝑘 ∈ 𝐴 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 DECID wdc 835 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 ∀wral 2475 ⊆ wss 3157 class class class wbr 4033 ‘cfv 5258 (class class class)co 5922 Fincfn 6799 0cc0 7879 # cap 8608 / cdiv 8699 ℤcz 9326 ℤ≥cuz 9601 Σcsu 11518 ∥ cdvds 11952 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-frec 6449 df-1o 6474 df-oadd 6478 df-er 6592 df-en 6800 df-dom 6801 df-fin 6802 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-fz 10084 df-fzo 10218 df-seqfrec 10540 df-exp 10631 df-ihash 10868 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-clim 11444 df-sumdc 11519 df-dvds 11953 |
| This theorem is referenced by: 3dvds 12029 |
| Copyright terms: Public domain | W3C validator |