ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumdvds GIF version

Theorem fsumdvds 12007
Description: If every term in a sum is divisible by 𝑁, then so is the sum. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypotheses
Ref Expression
fsumdvds.1 (𝜑𝐴 ∈ Fin)
fsumdvds.2 (𝜑𝑁 ∈ ℤ)
fsumdvds.3 ((𝜑𝑘𝐴) → 𝐵 ∈ ℤ)
fsumdvds.4 ((𝜑𝑘𝐴) → 𝑁𝐵)
Assertion
Ref Expression
fsumdvds (𝜑𝑁 ∥ Σ𝑘𝐴 𝐵)
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsumdvds
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 0z 9337 . . . 4 0 ∈ ℤ
2 dvds0 11971 . . . 4 (0 ∈ ℤ → 0 ∥ 0)
31, 2mp1i 10 . . 3 ((𝜑𝑁 = 0) → 0 ∥ 0)
4 simpr 110 . . 3 ((𝜑𝑁 = 0) → 𝑁 = 0)
5 simplr 528 . . . . . . 7 (((𝜑𝑁 = 0) ∧ 𝑘𝐴) → 𝑁 = 0)
6 fsumdvds.4 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝑁𝐵)
76adantlr 477 . . . . . . 7 (((𝜑𝑁 = 0) ∧ 𝑘𝐴) → 𝑁𝐵)
85, 7eqbrtrrd 4057 . . . . . 6 (((𝜑𝑁 = 0) ∧ 𝑘𝐴) → 0 ∥ 𝐵)
9 fsumdvds.3 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ∈ ℤ)
109adantlr 477 . . . . . . 7 (((𝜑𝑁 = 0) ∧ 𝑘𝐴) → 𝐵 ∈ ℤ)
11 0dvds 11976 . . . . . . 7 (𝐵 ∈ ℤ → (0 ∥ 𝐵𝐵 = 0))
1210, 11syl 14 . . . . . 6 (((𝜑𝑁 = 0) ∧ 𝑘𝐴) → (0 ∥ 𝐵𝐵 = 0))
138, 12mpbid 147 . . . . 5 (((𝜑𝑁 = 0) ∧ 𝑘𝐴) → 𝐵 = 0)
1413sumeq2dv 11533 . . . 4 ((𝜑𝑁 = 0) → Σ𝑘𝐴 𝐵 = Σ𝑘𝐴 0)
15 fsumdvds.1 . . . . . . 7 (𝜑𝐴 ∈ Fin)
1615adantr 276 . . . . . 6 ((𝜑𝑁 = 0) → 𝐴 ∈ Fin)
1716olcd 735 . . . . 5 ((𝜑𝑁 = 0) → ((0 ∈ ℤ ∧ 𝐴 ⊆ (ℤ‘0) ∧ ∀𝑗 ∈ (ℤ‘0)DECID 𝑗𝐴) ∨ 𝐴 ∈ Fin))
18 isumz 11554 . . . . 5 (((0 ∈ ℤ ∧ 𝐴 ⊆ (ℤ‘0) ∧ ∀𝑗 ∈ (ℤ‘0)DECID 𝑗𝐴) ∨ 𝐴 ∈ Fin) → Σ𝑘𝐴 0 = 0)
1917, 18syl 14 . . . 4 ((𝜑𝑁 = 0) → Σ𝑘𝐴 0 = 0)
2014, 19eqtrd 2229 . . 3 ((𝜑𝑁 = 0) → Σ𝑘𝐴 𝐵 = 0)
213, 4, 203brtr4d 4065 . 2 ((𝜑𝑁 = 0) → 𝑁 ∥ Σ𝑘𝐴 𝐵)
2215adantr 276 . . . . 5 ((𝜑𝑁 ≠ 0) → 𝐴 ∈ Fin)
23 fsumdvds.2 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
2423adantr 276 . . . . . 6 ((𝜑𝑁 ≠ 0) → 𝑁 ∈ ℤ)
2524zcnd 9449 . . . . 5 ((𝜑𝑁 ≠ 0) → 𝑁 ∈ ℂ)
269adantlr 477 . . . . . 6 (((𝜑𝑁 ≠ 0) ∧ 𝑘𝐴) → 𝐵 ∈ ℤ)
2726zcnd 9449 . . . . 5 (((𝜑𝑁 ≠ 0) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
28 zapne 9400 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑁 # 0 ↔ 𝑁 ≠ 0))
2923, 1, 28sylancl 413 . . . . . 6 (𝜑 → (𝑁 # 0 ↔ 𝑁 ≠ 0))
3029biimpar 297 . . . . 5 ((𝜑𝑁 ≠ 0) → 𝑁 # 0)
3122, 25, 27, 30fsumdivapc 11615 . . . 4 ((𝜑𝑁 ≠ 0) → (Σ𝑘𝐴 𝐵 / 𝑁) = Σ𝑘𝐴 (𝐵 / 𝑁))
326adantlr 477 . . . . . 6 (((𝜑𝑁 ≠ 0) ∧ 𝑘𝐴) → 𝑁𝐵)
3324adantr 276 . . . . . . 7 (((𝜑𝑁 ≠ 0) ∧ 𝑘𝐴) → 𝑁 ∈ ℤ)
34 simplr 528 . . . . . . 7 (((𝜑𝑁 ≠ 0) ∧ 𝑘𝐴) → 𝑁 ≠ 0)
35 dvdsval2 11955 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ 𝐵 ∈ ℤ) → (𝑁𝐵 ↔ (𝐵 / 𝑁) ∈ ℤ))
3633, 34, 26, 35syl3anc 1249 . . . . . 6 (((𝜑𝑁 ≠ 0) ∧ 𝑘𝐴) → (𝑁𝐵 ↔ (𝐵 / 𝑁) ∈ ℤ))
3732, 36mpbid 147 . . . . 5 (((𝜑𝑁 ≠ 0) ∧ 𝑘𝐴) → (𝐵 / 𝑁) ∈ ℤ)
3822, 37fsumzcl 11567 . . . 4 ((𝜑𝑁 ≠ 0) → Σ𝑘𝐴 (𝐵 / 𝑁) ∈ ℤ)
3931, 38eqeltrd 2273 . . 3 ((𝜑𝑁 ≠ 0) → (Σ𝑘𝐴 𝐵 / 𝑁) ∈ ℤ)
40 simpr 110 . . . 4 ((𝜑𝑁 ≠ 0) → 𝑁 ≠ 0)
4115, 9fsumzcl 11567 . . . . 5 (𝜑 → Σ𝑘𝐴 𝐵 ∈ ℤ)
4241adantr 276 . . . 4 ((𝜑𝑁 ≠ 0) → Σ𝑘𝐴 𝐵 ∈ ℤ)
43 dvdsval2 11955 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ Σ𝑘𝐴 𝐵 ∈ ℤ) → (𝑁 ∥ Σ𝑘𝐴 𝐵 ↔ (Σ𝑘𝐴 𝐵 / 𝑁) ∈ ℤ))
4424, 40, 42, 43syl3anc 1249 . . 3 ((𝜑𝑁 ≠ 0) → (𝑁 ∥ Σ𝑘𝐴 𝐵 ↔ (Σ𝑘𝐴 𝐵 / 𝑁) ∈ ℤ))
4539, 44mpbird 167 . 2 ((𝜑𝑁 ≠ 0) → 𝑁 ∥ Σ𝑘𝐴 𝐵)
46 zdceq 9401 . . . 4 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
4723, 1, 46sylancl 413 . . 3 (𝜑DECID 𝑁 = 0)
48 dcne 2378 . . 3 (DECID 𝑁 = 0 ↔ (𝑁 = 0 ∨ 𝑁 ≠ 0))
4947, 48sylib 122 . 2 (𝜑 → (𝑁 = 0 ∨ 𝑁 ≠ 0))
5021, 45, 49mpjaodan 799 1 (𝜑𝑁 ∥ Σ𝑘𝐴 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  w3a 980   = wceq 1364  wcel 2167  wne 2367  wral 2475  wss 3157   class class class wbr 4033  cfv 5258  (class class class)co 5922  Fincfn 6799  0cc0 7879   # cap 8608   / cdiv 8699  cz 9326  cuz 9601  Σcsu 11518  cdvds 11952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519  df-dvds 11953
This theorem is referenced by:  3dvds  12029
  Copyright terms: Public domain W3C validator