| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mplsubgfilemm | Unicode version | ||
| Description: Lemma for mplsubgfi 14630. There exists a polynomial. (Contributed by Jim Kingdon, 21-Nov-2025.) |
| Ref | Expression |
|---|---|
| mplsubg.s |
|
| mplsubg.p |
|
| mplsubg.u |
|
| mplsubg.i |
|
| mplsubg.r |
|
| Ref | Expression |
|---|---|
| mplsubgfilemm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplsubg.s |
. . . . 5
| |
| 2 | mplsubg.i |
. . . . 5
| |
| 3 | mplsubg.r |
. . . . 5
| |
| 4 | eqid 2209 |
. . . . 5
| |
| 5 | eqid 2209 |
. . . . 5
| |
| 6 | eqid 2209 |
. . . . 5
| |
| 7 | 1, 2, 3, 4, 5, 6 | psr0 14615 |
. . . 4
|
| 8 | eqid 2209 |
. . . . 5
| |
| 9 | 1, 2, 3, 4, 5, 8 | psr0cl 14610 |
. . . 4
|
| 10 | 7, 9 | eqeltrd 2286 |
. . 3
|
| 11 | 0nn0 9352 |
. . . . . . 7
| |
| 12 | 11 | a1i 9 |
. . . . . 6
|
| 13 | 12 | fmpttd 5763 |
. . . . 5
|
| 14 | nn0ex 9343 |
. . . . . . 7
| |
| 15 | 14 | a1i 9 |
. . . . . 6
|
| 16 | 15, 2 | elmapd 6779 |
. . . . 5
|
| 17 | 13, 16 | mpbird 167 |
. . . 4
|
| 18 | 7 | fveq1d 5605 |
. . . . . . . 8
|
| 19 | 18 | adantr 276 |
. . . . . . 7
|
| 20 | eqid 2209 |
. . . . . . . . . . 11
| |
| 21 | 20, 5 | grpidcl 13528 |
. . . . . . . . . 10
|
| 22 | 3, 21 | syl 14 |
. . . . . . . . 9
|
| 23 | 22 | adantr 276 |
. . . . . . . 8
|
| 24 | simpr 110 |
. . . . . . . . 9
| |
| 25 | 4 | psrbagfi 14602 |
. . . . . . . . . . 11
|
| 26 | 2, 25 | syl 14 |
. . . . . . . . . 10
|
| 27 | 26 | adantr 276 |
. . . . . . . . 9
|
| 28 | 24, 27 | eleqtrrd 2289 |
. . . . . . . 8
|
| 29 | fvconst2g 5826 |
. . . . . . . 8
| |
| 30 | 23, 28, 29 | syl2anc 411 |
. . . . . . 7
|
| 31 | 19, 30 | eqtrd 2242 |
. . . . . 6
|
| 32 | 31 | a1d 22 |
. . . . 5
|
| 33 | 32 | ralrimiva 2583 |
. . . 4
|
| 34 | fveq1 5602 |
. . . . . . 7
| |
| 35 | 34 | breq1d 4072 |
. . . . . 6
|
| 36 | 35 | ralbidv 2510 |
. . . . 5
|
| 37 | 36 | rspceaimv 2895 |
. . . 4
|
| 38 | 17, 33, 37 | syl2anc 411 |
. . 3
|
| 39 | mplsubg.p |
. . . . 5
| |
| 40 | mplsubg.u |
. . . . 5
| |
| 41 | 39, 1, 8, 5, 40 | mplelbascoe 14621 |
. . . 4
|
| 42 | 2, 3, 41 | syl2anc 411 |
. . 3
|
| 43 | 10, 38, 42 | mpbir2and 949 |
. 2
|
| 44 | eleq1 2272 |
. . 3
| |
| 45 | 44 | spcegv 2871 |
. 2
|
| 46 | 43, 43, 45 | sylc 62 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-tp 3654 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-iord 4434 df-on 4436 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-of 6188 df-1st 6256 df-2nd 6257 df-1o 6532 df-er 6650 df-map 6767 df-ixp 6816 df-en 6858 df-fin 6860 df-sup 7119 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-7 9142 df-8 9143 df-9 9144 df-n0 9338 df-z 9415 df-dec 9547 df-uz 9691 df-fz 10173 df-struct 13000 df-ndx 13001 df-slot 13002 df-base 13004 df-sets 13005 df-iress 13006 df-plusg 13089 df-mulr 13090 df-sca 13092 df-vsca 13093 df-ip 13094 df-tset 13095 df-ple 13096 df-ds 13098 df-hom 13100 df-cco 13101 df-rest 13240 df-topn 13241 df-0g 13257 df-topgen 13259 df-pt 13260 df-prds 13266 df-pws 13289 df-mgm 13355 df-sgrp 13401 df-mnd 13416 df-grp 13502 df-minusg 13503 df-psr 14592 df-mplcoe 14593 |
| This theorem is referenced by: mplsubgfi 14630 |
| Copyright terms: Public domain | W3C validator |