Step | Hyp | Ref
| Expression |
1 | | elnnuz 9629 |
. . . . 5
⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈
(ℤ≥‘1)) |
2 | 1 | biimpi 120 |
. . . 4
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
(ℤ≥‘1)) |
3 | 2 | adantr 276 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → 𝑁 ∈
(ℤ≥‘1)) |
4 | | mulgnngsum.f |
. . . . . 6
⊢ 𝐹 = (𝑥 ∈ (1...𝑁) ↦ 𝑋) |
5 | 4 | a1i 9 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑁)) → 𝐹 = (𝑥 ∈ (1...𝑁) ↦ 𝑋)) |
6 | | eqidd 2194 |
. . . . 5
⊢ ((((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑁)) ∧ 𝑥 = 𝑖) → 𝑋 = 𝑋) |
7 | | simpr 110 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑁)) → 𝑖 ∈ (1...𝑁)) |
8 | | simpr 110 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
9 | 8 | adantr 276 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑁)) → 𝑋 ∈ 𝐵) |
10 | 5, 6, 7, 9 | fvmptd 5638 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑁)) → (𝐹‘𝑖) = 𝑋) |
11 | | elfznn 10120 |
. . . . 5
⊢ (𝑖 ∈ (1...𝑁) → 𝑖 ∈ ℕ) |
12 | | fvconst2g 5772 |
. . . . 5
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑖 ∈ ℕ) → ((ℕ ×
{𝑋})‘𝑖) = 𝑋) |
13 | 8, 11, 12 | syl2an 289 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑁)) → ((ℕ × {𝑋})‘𝑖) = 𝑋) |
14 | 10, 13 | eqtr4d 2229 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑖 ∈ (1...𝑁)) → (𝐹‘𝑖) = ((ℕ × {𝑋})‘𝑖)) |
15 | | 1zzd 9344 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → 1 ∈ ℤ) |
16 | | nnz 9336 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℤ) |
17 | 16 | adantr 276 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → 𝑁 ∈ ℤ) |
18 | 15, 17 | fzfigd 10502 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (1...𝑁) ∈ Fin) |
19 | | mptexg 5783 |
. . . . . . 7
⊢
((1...𝑁) ∈ Fin
→ (𝑥 ∈ (1...𝑁) ↦ 𝑋) ∈ V) |
20 | 4, 19 | eqeltrid 2280 |
. . . . . 6
⊢
((1...𝑁) ∈ Fin
→ 𝐹 ∈
V) |
21 | 18, 20 | syl 14 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → 𝐹 ∈ V) |
22 | 21 | adantr 276 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ (ℤ≥‘1))
→ 𝐹 ∈
V) |
23 | | vex 2763 |
. . . 4
⊢ 𝑎 ∈ V |
24 | | fvexg 5573 |
. . . 4
⊢ ((𝐹 ∈ V ∧ 𝑎 ∈ V) → (𝐹‘𝑎) ∈ V) |
25 | 22, 23, 24 | sylancl 413 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ (ℤ≥‘1))
→ (𝐹‘𝑎) ∈ V) |
26 | | nnex 8988 |
. . . . 5
⊢ ℕ
∈ V |
27 | 8 | adantr 276 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ (ℤ≥‘1))
→ 𝑋 ∈ 𝐵) |
28 | | snexg 4213 |
. . . . . 6
⊢ (𝑋 ∈ 𝐵 → {𝑋} ∈ V) |
29 | 27, 28 | syl 14 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ (ℤ≥‘1))
→ {𝑋} ∈
V) |
30 | | xpexg 4773 |
. . . . 5
⊢ ((ℕ
∈ V ∧ {𝑋} ∈
V) → (ℕ × {𝑋}) ∈ V) |
31 | 26, 29, 30 | sylancr 414 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ (ℤ≥‘1))
→ (ℕ × {𝑋}) ∈ V) |
32 | | fvexg 5573 |
. . . 4
⊢
(((ℕ × {𝑋}) ∈ V ∧ 𝑎 ∈ V) → ((ℕ × {𝑋})‘𝑎) ∈ V) |
33 | 31, 23, 32 | sylancl 413 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ (ℤ≥‘1))
→ ((ℕ × {𝑋})‘𝑎) ∈ V) |
34 | | mulgnngsum.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐺) |
35 | 34 | basmex 12677 |
. . . . . 6
⊢ (𝑋 ∈ 𝐵 → 𝐺 ∈ V) |
36 | 35 | adantl 277 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → 𝐺 ∈ V) |
37 | | plusgslid 12730 |
. . . . . 6
⊢
(+g = Slot (+g‘ndx) ∧
(+g‘ndx) ∈ ℕ) |
38 | 37 | slotex 12645 |
. . . . 5
⊢ (𝐺 ∈ V →
(+g‘𝐺)
∈ V) |
39 | 36, 38 | syl 14 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (+g‘𝐺) ∈ V) |
40 | | simprr 531 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ V ∧ 𝑏 ∈ V)) → 𝑏 ∈ V) |
41 | | ovexg 5952 |
. . . 4
⊢ ((𝑎 ∈ V ∧
(+g‘𝐺)
∈ V ∧ 𝑏 ∈ V)
→ (𝑎(+g‘𝐺)𝑏) ∈ V) |
42 | 23, 39, 40, 41 | mp3an2ani 1355 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ V ∧ 𝑏 ∈ V)) → (𝑎(+g‘𝐺)𝑏) ∈ V) |
43 | 3, 14, 25, 33, 42 | seq3fveq 10550 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (seq1((+g‘𝐺), 𝐹)‘𝑁) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁)) |
44 | | eqid 2193 |
. . 3
⊢
(+g‘𝐺) = (+g‘𝐺) |
45 | 8 | adantr 276 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ (1...𝑁)) → 𝑋 ∈ 𝐵) |
46 | 45, 4 | fmptd 5712 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → 𝐹:(1...𝑁)⟶𝐵) |
47 | 34, 44, 36, 3, 46 | gsumval2 12980 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝐺 Σg 𝐹) =
(seq1((+g‘𝐺), 𝐹)‘𝑁)) |
48 | | mulgnngsum.t |
. . 3
⊢ · =
(.g‘𝐺) |
49 | | eqid 2193 |
. . 3
⊢
seq1((+g‘𝐺), (ℕ × {𝑋})) = seq1((+g‘𝐺), (ℕ × {𝑋})) |
50 | 34, 44, 48, 49 | mulgnn 13196 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁)) |
51 | 43, 47, 50 | 3eqtr4rd 2237 |
1
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (𝐺 Σg 𝐹)) |