ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgnngsum GIF version

Theorem mulgnngsum 13197
Description: Group multiple (exponentiation) operation at a positive integer expressed by a group sum. (Contributed by AV, 28-Dec-2023.)
Hypotheses
Ref Expression
mulgnngsum.b 𝐵 = (Base‘𝐺)
mulgnngsum.t · = (.g𝐺)
mulgnngsum.f 𝐹 = (𝑥 ∈ (1...𝑁) ↦ 𝑋)
Assertion
Ref Expression
mulgnngsum ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = (𝐺 Σg 𝐹))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑁   𝑥,𝑋
Allowed substitution hints:   · (𝑥)   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem mulgnngsum
Dummy variables 𝑎 𝑏 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnnuz 9629 . . . . 5 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
21biimpi 120 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘1))
32adantr 276 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → 𝑁 ∈ (ℤ‘1))
4 mulgnngsum.f . . . . . 6 𝐹 = (𝑥 ∈ (1...𝑁) ↦ 𝑋)
54a1i 9 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑖 ∈ (1...𝑁)) → 𝐹 = (𝑥 ∈ (1...𝑁) ↦ 𝑋))
6 eqidd 2194 . . . . 5 ((((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑖 ∈ (1...𝑁)) ∧ 𝑥 = 𝑖) → 𝑋 = 𝑋)
7 simpr 110 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑖 ∈ (1...𝑁)) → 𝑖 ∈ (1...𝑁))
8 simpr 110 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → 𝑋𝐵)
98adantr 276 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑖 ∈ (1...𝑁)) → 𝑋𝐵)
105, 6, 7, 9fvmptd 5638 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑖 ∈ (1...𝑁)) → (𝐹𝑖) = 𝑋)
11 elfznn 10120 . . . . 5 (𝑖 ∈ (1...𝑁) → 𝑖 ∈ ℕ)
12 fvconst2g 5772 . . . . 5 ((𝑋𝐵𝑖 ∈ ℕ) → ((ℕ × {𝑋})‘𝑖) = 𝑋)
138, 11, 12syl2an 289 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑖 ∈ (1...𝑁)) → ((ℕ × {𝑋})‘𝑖) = 𝑋)
1410, 13eqtr4d 2229 . . 3 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑖 ∈ (1...𝑁)) → (𝐹𝑖) = ((ℕ × {𝑋})‘𝑖))
15 1zzd 9344 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → 1 ∈ ℤ)
16 nnz 9336 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
1716adantr 276 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → 𝑁 ∈ ℤ)
1815, 17fzfigd 10502 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (1...𝑁) ∈ Fin)
19 mptexg 5783 . . . . . . 7 ((1...𝑁) ∈ Fin → (𝑥 ∈ (1...𝑁) ↦ 𝑋) ∈ V)
204, 19eqeltrid 2280 . . . . . 6 ((1...𝑁) ∈ Fin → 𝐹 ∈ V)
2118, 20syl 14 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → 𝐹 ∈ V)
2221adantr 276 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑎 ∈ (ℤ‘1)) → 𝐹 ∈ V)
23 vex 2763 . . . 4 𝑎 ∈ V
24 fvexg 5573 . . . 4 ((𝐹 ∈ V ∧ 𝑎 ∈ V) → (𝐹𝑎) ∈ V)
2522, 23, 24sylancl 413 . . 3 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑎 ∈ (ℤ‘1)) → (𝐹𝑎) ∈ V)
26 nnex 8988 . . . . 5 ℕ ∈ V
278adantr 276 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑎 ∈ (ℤ‘1)) → 𝑋𝐵)
28 snexg 4213 . . . . . 6 (𝑋𝐵 → {𝑋} ∈ V)
2927, 28syl 14 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑎 ∈ (ℤ‘1)) → {𝑋} ∈ V)
30 xpexg 4773 . . . . 5 ((ℕ ∈ V ∧ {𝑋} ∈ V) → (ℕ × {𝑋}) ∈ V)
3126, 29, 30sylancr 414 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑎 ∈ (ℤ‘1)) → (ℕ × {𝑋}) ∈ V)
32 fvexg 5573 . . . 4 (((ℕ × {𝑋}) ∈ V ∧ 𝑎 ∈ V) → ((ℕ × {𝑋})‘𝑎) ∈ V)
3331, 23, 32sylancl 413 . . 3 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑎 ∈ (ℤ‘1)) → ((ℕ × {𝑋})‘𝑎) ∈ V)
34 mulgnngsum.b . . . . . . 7 𝐵 = (Base‘𝐺)
3534basmex 12677 . . . . . 6 (𝑋𝐵𝐺 ∈ V)
3635adantl 277 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → 𝐺 ∈ V)
37 plusgslid 12730 . . . . . 6 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
3837slotex 12645 . . . . 5 (𝐺 ∈ V → (+g𝐺) ∈ V)
3936, 38syl 14 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (+g𝐺) ∈ V)
40 simprr 531 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ (𝑎 ∈ V ∧ 𝑏 ∈ V)) → 𝑏 ∈ V)
41 ovexg 5952 . . . 4 ((𝑎 ∈ V ∧ (+g𝐺) ∈ V ∧ 𝑏 ∈ V) → (𝑎(+g𝐺)𝑏) ∈ V)
4223, 39, 40, 41mp3an2ani 1355 . . 3 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ (𝑎 ∈ V ∧ 𝑏 ∈ V)) → (𝑎(+g𝐺)𝑏) ∈ V)
433, 14, 25, 33, 42seq3fveq 10550 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (seq1((+g𝐺), 𝐹)‘𝑁) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
44 eqid 2193 . . 3 (+g𝐺) = (+g𝐺)
458adantr 276 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑥 ∈ (1...𝑁)) → 𝑋𝐵)
4645, 4fmptd 5712 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → 𝐹:(1...𝑁)⟶𝐵)
4734, 44, 36, 3, 46gsumval2 12980 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝐺 Σg 𝐹) = (seq1((+g𝐺), 𝐹)‘𝑁))
48 mulgnngsum.t . . 3 · = (.g𝐺)
49 eqid 2193 . . 3 seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐺), (ℕ × {𝑋}))
5034, 44, 48, 49mulgnn 13196 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
5143, 47, 503eqtr4rd 2237 1 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = (𝐺 Σg 𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  Vcvv 2760  {csn 3618  cmpt 4090   × cxp 4657  cfv 5254  (class class class)co 5918  Fincfn 6794  1c1 7873  cn 8982  cz 9317  cuz 9592  ...cfz 10074  seqcseq 10518  Basecbs 12618  +gcplusg 12695   Σg cgsu 12868  .gcmg 13189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-1o 6469  df-er 6587  df-en 6795  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075  df-seqfrec 10519  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-0g 12869  df-igsum 12870  df-minusg 13076  df-mulg 13190
This theorem is referenced by:  mulgnn0gsum  13198
  Copyright terms: Public domain W3C validator