ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgnngsum GIF version

Theorem mulgnngsum 13672
Description: Group multiple (exponentiation) operation at a positive integer expressed by a group sum. (Contributed by AV, 28-Dec-2023.)
Hypotheses
Ref Expression
mulgnngsum.b 𝐵 = (Base‘𝐺)
mulgnngsum.t · = (.g𝐺)
mulgnngsum.f 𝐹 = (𝑥 ∈ (1...𝑁) ↦ 𝑋)
Assertion
Ref Expression
mulgnngsum ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = (𝐺 Σg 𝐹))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑁   𝑥,𝑋
Allowed substitution hints:   · (𝑥)   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem mulgnngsum
Dummy variables 𝑎 𝑏 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnnuz 9767 . . . . 5 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
21biimpi 120 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘1))
32adantr 276 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → 𝑁 ∈ (ℤ‘1))
4 mulgnngsum.f . . . . . 6 𝐹 = (𝑥 ∈ (1...𝑁) ↦ 𝑋)
54a1i 9 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑖 ∈ (1...𝑁)) → 𝐹 = (𝑥 ∈ (1...𝑁) ↦ 𝑋))
6 eqidd 2230 . . . . 5 ((((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑖 ∈ (1...𝑁)) ∧ 𝑥 = 𝑖) → 𝑋 = 𝑋)
7 simpr 110 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑖 ∈ (1...𝑁)) → 𝑖 ∈ (1...𝑁))
8 simpr 110 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → 𝑋𝐵)
98adantr 276 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑖 ∈ (1...𝑁)) → 𝑋𝐵)
105, 6, 7, 9fvmptd 5717 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑖 ∈ (1...𝑁)) → (𝐹𝑖) = 𝑋)
11 elfznn 10258 . . . . 5 (𝑖 ∈ (1...𝑁) → 𝑖 ∈ ℕ)
12 fvconst2g 5857 . . . . 5 ((𝑋𝐵𝑖 ∈ ℕ) → ((ℕ × {𝑋})‘𝑖) = 𝑋)
138, 11, 12syl2an 289 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑖 ∈ (1...𝑁)) → ((ℕ × {𝑋})‘𝑖) = 𝑋)
1410, 13eqtr4d 2265 . . 3 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑖 ∈ (1...𝑁)) → (𝐹𝑖) = ((ℕ × {𝑋})‘𝑖))
15 1zzd 9481 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → 1 ∈ ℤ)
16 nnz 9473 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
1716adantr 276 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → 𝑁 ∈ ℤ)
1815, 17fzfigd 10661 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (1...𝑁) ∈ Fin)
19 mptexg 5868 . . . . . . 7 ((1...𝑁) ∈ Fin → (𝑥 ∈ (1...𝑁) ↦ 𝑋) ∈ V)
204, 19eqeltrid 2316 . . . . . 6 ((1...𝑁) ∈ Fin → 𝐹 ∈ V)
2118, 20syl 14 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → 𝐹 ∈ V)
2221adantr 276 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑎 ∈ (ℤ‘1)) → 𝐹 ∈ V)
23 vex 2802 . . . 4 𝑎 ∈ V
24 fvexg 5648 . . . 4 ((𝐹 ∈ V ∧ 𝑎 ∈ V) → (𝐹𝑎) ∈ V)
2522, 23, 24sylancl 413 . . 3 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑎 ∈ (ℤ‘1)) → (𝐹𝑎) ∈ V)
26 nnex 9124 . . . . 5 ℕ ∈ V
278adantr 276 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑎 ∈ (ℤ‘1)) → 𝑋𝐵)
28 snexg 4268 . . . . . 6 (𝑋𝐵 → {𝑋} ∈ V)
2927, 28syl 14 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑎 ∈ (ℤ‘1)) → {𝑋} ∈ V)
30 xpexg 4833 . . . . 5 ((ℕ ∈ V ∧ {𝑋} ∈ V) → (ℕ × {𝑋}) ∈ V)
3126, 29, 30sylancr 414 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑎 ∈ (ℤ‘1)) → (ℕ × {𝑋}) ∈ V)
32 fvexg 5648 . . . 4 (((ℕ × {𝑋}) ∈ V ∧ 𝑎 ∈ V) → ((ℕ × {𝑋})‘𝑎) ∈ V)
3331, 23, 32sylancl 413 . . 3 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑎 ∈ (ℤ‘1)) → ((ℕ × {𝑋})‘𝑎) ∈ V)
34 mulgnngsum.b . . . . . . 7 𝐵 = (Base‘𝐺)
3534basmex 13100 . . . . . 6 (𝑋𝐵𝐺 ∈ V)
3635adantl 277 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → 𝐺 ∈ V)
37 plusgslid 13153 . . . . . 6 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
3837slotex 13067 . . . . 5 (𝐺 ∈ V → (+g𝐺) ∈ V)
3936, 38syl 14 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (+g𝐺) ∈ V)
40 simprr 531 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ (𝑎 ∈ V ∧ 𝑏 ∈ V)) → 𝑏 ∈ V)
41 ovexg 6041 . . . 4 ((𝑎 ∈ V ∧ (+g𝐺) ∈ V ∧ 𝑏 ∈ V) → (𝑎(+g𝐺)𝑏) ∈ V)
4223, 39, 40, 41mp3an2ani 1378 . . 3 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ (𝑎 ∈ V ∧ 𝑏 ∈ V)) → (𝑎(+g𝐺)𝑏) ∈ V)
433, 14, 25, 33, 42seq3fveq 10709 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (seq1((+g𝐺), 𝐹)‘𝑁) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
44 eqid 2229 . . 3 (+g𝐺) = (+g𝐺)
458adantr 276 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑥 ∈ (1...𝑁)) → 𝑋𝐵)
4645, 4fmptd 5791 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → 𝐹:(1...𝑁)⟶𝐵)
4734, 44, 36, 3, 46gsumval2 13438 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝐺 Σg 𝐹) = (seq1((+g𝐺), 𝐹)‘𝑁))
48 mulgnngsum.t . . 3 · = (.g𝐺)
49 eqid 2229 . . 3 seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐺), (ℕ × {𝑋}))
5034, 44, 48, 49mulgnn 13671 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
5143, 47, 503eqtr4rd 2273 1 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = (𝐺 Σg 𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  Vcvv 2799  {csn 3666  cmpt 4145   × cxp 4717  cfv 5318  (class class class)co 6007  Fincfn 6895  1c1 8008  cn 9118  cz 9454  cuz 9730  ...cfz 10212  seqcseq 10677  Basecbs 13040  +gcplusg 13118   Σg cgsu 13298  .gcmg 13664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-1o 6568  df-er 6688  df-en 6896  df-fin 6898  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-inn 9119  df-2 9177  df-n0 9378  df-z 9455  df-uz 9731  df-fz 10213  df-seqfrec 10678  df-ndx 13043  df-slot 13044  df-base 13046  df-plusg 13131  df-0g 13299  df-igsum 13300  df-minusg 13545  df-mulg 13665
This theorem is referenced by:  mulgnn0gsum  13673
  Copyright terms: Public domain W3C validator