ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plymul Unicode version

Theorem plymul 15072
Description: The product of two polynomials is a polynomial. (Contributed by Mario Carneiro, 21-Jul-2014.)
Hypotheses
Ref Expression
plyadd.1  |-  ( ph  ->  F  e.  (Poly `  S ) )
plyadd.2  |-  ( ph  ->  G  e.  (Poly `  S ) )
plyadd.3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  +  y )  e.  S )
plymul.4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  x.  y
)  e.  S )
Assertion
Ref Expression
plymul  |-  ( ph  ->  ( F  oF  x.  G )  e.  (Poly `  S )
)
Distinct variable groups:    x, y, F   
x, S, y    x, G, y    ph, x, y

Proof of Theorem plymul
Dummy variables  k  m  n  z  a  b  j  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plyadd.1 . . 3  |-  ( ph  ->  F  e.  (Poly `  S ) )
2 elply2 15055 . . . 4  |-  ( F  e.  (Poly `  S
)  <->  ( S  C_  CC  /\  E. m  e. 
NN0  E. a  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
m  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) ) )
32simprbi 275 . . 3  |-  ( F  e.  (Poly `  S
)  ->  E. m  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
m  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) )
41, 3syl 14 . 2  |-  ( ph  ->  E. m  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
m  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) )
5 plyadd.2 . . 3  |-  ( ph  ->  G  e.  (Poly `  S ) )
6 elply2 15055 . . . 4  |-  ( G  e.  (Poly `  S
)  <->  ( S  C_  CC  /\  E. n  e. 
NN0  E. b  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) ( ( b
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k )  x.  (
z ^ k ) ) ) ) ) )
76simprbi 275 . . 3  |-  ( G  e.  (Poly `  S
)  ->  E. n  e.  NN0  E. b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( b
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k )  x.  (
z ^ k ) ) ) ) )
85, 7syl 14 . 2  |-  ( ph  ->  E. n  e.  NN0  E. b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( b
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k )  x.  (
z ^ k ) ) ) ) )
9 reeanv 2667 . . 3  |-  ( E. m  e.  NN0  E. n  e.  NN0  ( E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
m  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  E. b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( b
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k )  x.  (
z ^ k ) ) ) ) )  <-> 
( E. m  e. 
NN0  E. a  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
m  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  E. n  e.  NN0  E. b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( b
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k )  x.  (
z ^ k ) ) ) ) ) )
10 reeanv 2667 . . . . 5  |-  ( E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) E. b  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) ( ( ( a " ( ZZ>= `  ( m  +  1
) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  ( ( b "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) )  <->  ( E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
m  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  E. b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( b
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k )  x.  (
z ^ k ) ) ) ) ) )
11 simp1l 1023 . . . . . . . . 9  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  n  e.  NN0 ) )  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )  /\  (
( ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  ph )
1211, 1syl 14 . . . . . . . 8  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  n  e.  NN0 ) )  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )  /\  (
( ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  F  e.  (Poly `  S ) )
1311, 5syl 14 . . . . . . . 8  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  n  e.  NN0 ) )  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )  /\  (
( ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  G  e.  (Poly `  S ) )
14 plyadd.3 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  +  y )  e.  S )
1511, 14sylan 283 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( m  e.  NN0  /\  n  e.  NN0 )
)  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )  /\  (
( ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  +  y )  e.  S )
16 simp1rl 1064 . . . . . . . 8  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  n  e.  NN0 ) )  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )  /\  (
( ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  m  e.  NN0 )
17 simp1rr 1065 . . . . . . . 8  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  n  e.  NN0 ) )  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )  /\  (
( ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  n  e.  NN0 )
18 simp2l 1025 . . . . . . . 8  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  n  e.  NN0 ) )  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )  /\  (
( ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  a  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) )
19 simp2r 1026 . . . . . . . 8  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  n  e.  NN0 ) )  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )  /\  (
( ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  b  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) )
20 simp3ll 1070 . . . . . . . 8  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  n  e.  NN0 ) )  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )  /\  (
( ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 } )
21 simp3rl 1072 . . . . . . . 8  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  n  e.  NN0 ) )  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )  /\  (
( ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  ( b "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 } )
22 simp3lr 1071 . . . . . . . . 9  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  n  e.  NN0 ) )  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )  /\  (
( ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )
23 oveq1 5932 . . . . . . . . . . . . 13  |-  ( z  =  w  ->  (
z ^ k )  =  ( w ^
k ) )
2423oveq2d 5941 . . . . . . . . . . . 12  |-  ( z  =  w  ->  (
( a `  k
)  x.  ( z ^ k ) )  =  ( ( a `
 k )  x.  ( w ^ k
) ) )
2524sumeq2sdv 11552 . . . . . . . . . . 11  |-  ( z  =  w  ->  sum_ k  e.  ( 0 ... m
) ( ( a `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( w ^ k ) ) )
26 fveq2 5561 . . . . . . . . . . . . 13  |-  ( k  =  j  ->  (
a `  k )  =  ( a `  j ) )
27 oveq2 5933 . . . . . . . . . . . . 13  |-  ( k  =  j  ->  (
w ^ k )  =  ( w ^
j ) )
2826, 27oveq12d 5943 . . . . . . . . . . . 12  |-  ( k  =  j  ->  (
( a `  k
)  x.  ( w ^ k ) )  =  ( ( a `
 j )  x.  ( w ^ j
) ) )
2928cbvsumv 11543 . . . . . . . . . . 11  |-  sum_ k  e.  ( 0 ... m
) ( ( a `
 k )  x.  ( w ^ k
) )  =  sum_ j  e.  ( 0 ... m ) ( ( a `  j
)  x.  ( w ^ j ) )
3025, 29eqtrdi 2245 . . . . . . . . . 10  |-  ( z  =  w  ->  sum_ k  e.  ( 0 ... m
) ( ( a `
 k )  x.  ( z ^ k
) )  =  sum_ j  e.  ( 0 ... m ) ( ( a `  j
)  x.  ( w ^ j ) ) )
3130cbvmptv 4130 . . . . . . . . 9  |-  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m
) ( ( a `
 k )  x.  ( z ^ k
) ) )  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... m ) ( ( a `  j
)  x.  ( w ^ j ) ) )
3222, 31eqtrdi 2245 . . . . . . . 8  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  n  e.  NN0 ) )  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )  /\  (
( ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... m ) ( ( a `  j
)  x.  ( w ^ j ) ) ) )
33 simp3rr 1073 . . . . . . . . 9  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  n  e.  NN0 ) )  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )  /\  (
( ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) )
3423oveq2d 5941 . . . . . . . . . . . 12  |-  ( z  =  w  ->  (
( b `  k
)  x.  ( z ^ k ) )  =  ( ( b `
 k )  x.  ( w ^ k
) ) )
3534sumeq2sdv 11552 . . . . . . . . . . 11  |-  ( z  =  w  ->  sum_ k  e.  ( 0 ... n
) ( ( b `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( w ^ k ) ) )
36 fveq2 5561 . . . . . . . . . . . . 13  |-  ( k  =  j  ->  (
b `  k )  =  ( b `  j ) )
3736, 27oveq12d 5943 . . . . . . . . . . . 12  |-  ( k  =  j  ->  (
( b `  k
)  x.  ( w ^ k ) )  =  ( ( b `
 j )  x.  ( w ^ j
) ) )
3837cbvsumv 11543 . . . . . . . . . . 11  |-  sum_ k  e.  ( 0 ... n
) ( ( b `
 k )  x.  ( w ^ k
) )  =  sum_ j  e.  ( 0 ... n ) ( ( b `  j
)  x.  ( w ^ j ) )
3935, 38eqtrdi 2245 . . . . . . . . . 10  |-  ( z  =  w  ->  sum_ k  e.  ( 0 ... n
) ( ( b `
 k )  x.  ( z ^ k
) )  =  sum_ j  e.  ( 0 ... n ) ( ( b `  j
)  x.  ( w ^ j ) ) )
4039cbvmptv 4130 . . . . . . . . 9  |-  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n
) ( ( b `
 k )  x.  ( z ^ k
) ) )  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( b `  j
)  x.  ( w ^ j ) ) )
4133, 40eqtrdi 2245 . . . . . . . 8  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  n  e.  NN0 ) )  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )  /\  (
( ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  G  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( b `  j
)  x.  ( w ^ j ) ) ) )
42 plymul.4 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  x.  y
)  e.  S )
4311, 42sylan 283 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( m  e.  NN0  /\  n  e.  NN0 )
)  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )  /\  (
( ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  x.  y
)  e.  S )
4412, 13, 15, 16, 17, 18, 19, 20, 21, 32, 41, 43plymullem 15070 . . . . . . 7  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  n  e.  NN0 ) )  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )  /\  (
( ( a "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  ( F  oF  x.  G )  e.  (Poly `  S )
)
45443expia 1207 . . . . . 6  |-  ( ( ( ph  /\  (
m  e.  NN0  /\  n  e.  NN0 ) )  /\  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  /\  b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  -> 
( ( ( ( a " ( ZZ>= `  ( m  +  1
) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  ( ( b "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( F  oF  x.  G )  e.  (Poly `  S )
) )
4645rexlimdvva 2622 . . . . 5  |-  ( (
ph  /\  ( m  e.  NN0  /\  n  e. 
NN0 ) )  -> 
( E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) E. b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( ( a " ( ZZ>= `  ( m  +  1
) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  ( ( b "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
( F  oF  x.  G )  e.  (Poly `  S )
) )
4710, 46biimtrrid 153 . . . 4  |-  ( (
ph  /\  ( m  e.  NN0  /\  n  e. 
NN0 ) )  -> 
( ( E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
m  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  E. b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( b
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k )  x.  (
z ^ k ) ) ) ) )  ->  ( F  oF  x.  G )  e.  (Poly `  S )
) )
4847rexlimdvva 2622 . . 3  |-  ( ph  ->  ( E. m  e. 
NN0  E. n  e.  NN0  ( E. a  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
m  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  E. b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( b
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k )  x.  (
z ^ k ) ) ) ) )  ->  ( F  oF  x.  G )  e.  (Poly `  S )
) )
499, 48biimtrrid 153 . 2  |-  ( ph  ->  ( ( E. m  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
m  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  E. n  e.  NN0  E. b  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ( ( b
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k )  x.  (
z ^ k ) ) ) ) )  ->  ( F  oF  x.  G )  e.  (Poly `  S )
) )
504, 8, 49mp2and 433 1  |-  ( ph  ->  ( F  oF  x.  G )  e.  (Poly `  S )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   E.wrex 2476    u. cun 3155    C_ wss 3157   {csn 3623    |-> cmpt 4095   "cima 4667   ` cfv 5259  (class class class)co 5925    oFcof 6137    ^m cmap 6716   CCcc 7894   0cc0 7896   1c1 7897    + caddc 7899    x. cmul 7901   NN0cn0 9266   ZZ>=cuz 9618   ...cfz 10100   ^cexp 10647   sum_csu 11535  Polycply 15048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-disj 4012  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-of 6139  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-map 6718  df-en 6809  df-dom 6810  df-fin 6811  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648  df-ihash 10885  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-sumdc 11536  df-ply 15050
This theorem is referenced by:  plysub  15073  plymulcl  15075  plycolemc  15078
  Copyright terms: Public domain W3C validator