| Step | Hyp | Ref
 | Expression | 
| 1 |   | plyadd.1 | 
. . 3
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) | 
| 2 |   | elply2 14971 | 
. . . 4
⊢ (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑚 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)((𝑎 “ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))))) | 
| 3 | 2 | simprbi 275 | 
. . 3
⊢ (𝐹 ∈ (Poly‘𝑆) → ∃𝑚 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)((𝑎 “ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘))))) | 
| 4 | 1, 3 | syl 14 | 
. 2
⊢ (𝜑 → ∃𝑚 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)((𝑎
“ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘))))) | 
| 5 |   | plyadd.2 | 
. . 3
⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) | 
| 6 |   | elply2 14971 | 
. . . 4
⊢ (𝐺 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0
∃𝑏 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)((𝑏 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘)))))) | 
| 7 | 6 | simprbi 275 | 
. . 3
⊢ (𝐺 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0
∃𝑏 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)((𝑏 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘))))) | 
| 8 | 5, 7 | syl 14 | 
. 2
⊢ (𝜑 → ∃𝑛 ∈ ℕ0 ∃𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)((𝑏
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘))))) | 
| 9 |   | reeanv 2667 | 
. . 3
⊢
(∃𝑚 ∈
ℕ0 ∃𝑛 ∈ ℕ0 (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)((𝑎
“ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ∃𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)((𝑏
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘))))) ↔ (∃𝑚 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)((𝑎
“ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ∃𝑛 ∈ ℕ0 ∃𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)((𝑏
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘)))))) | 
| 10 |   | reeanv 2667 | 
. . . . 5
⊢
(∃𝑎 ∈
((𝑆 ∪ {0})
↑𝑚 ℕ0)∃𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)(((𝑎
“ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ((𝑏 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘))))) ↔ (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)((𝑎
“ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ∃𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)((𝑏
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘)))))) | 
| 11 |   | simp1l 1023 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ (𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)) ∧ (((𝑎 “ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ((𝑏 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘)))))) → 𝜑) | 
| 12 | 11, 1 | syl 14 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ (𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)) ∧ (((𝑎 “ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ((𝑏 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘)))))) → 𝐹 ∈ (Poly‘𝑆)) | 
| 13 | 11, 5 | syl 14 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ (𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)) ∧ (((𝑎 “ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ((𝑏 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘)))))) → 𝐺 ∈ (Poly‘𝑆)) | 
| 14 |   | plyadd.3 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | 
| 15 | 11, 14 | sylan 283 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ (𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)) ∧ (((𝑎 “ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ((𝑏 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘)))))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | 
| 16 |   | simp1rl 1064 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ (𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)) ∧ (((𝑎 “ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ((𝑏 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘)))))) → 𝑚 ∈ ℕ0) | 
| 17 |   | simp1rr 1065 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ (𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)) ∧ (((𝑎 “ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ((𝑏 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘)))))) → 𝑛 ∈ ℕ0) | 
| 18 |   | simp2l 1025 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ (𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)) ∧ (((𝑎 “ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ((𝑏 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘)))))) → 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)) | 
| 19 |   | simp2r 1026 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ (𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)) ∧ (((𝑎 “ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ((𝑏 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘)))))) → 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)) | 
| 20 |   | simp3ll 1070 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ (𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)) ∧ (((𝑎 “ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ((𝑏 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘)))))) → (𝑎 “ (ℤ≥‘(𝑚 + 1))) = {0}) | 
| 21 |   | simp3rl 1072 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ (𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)) ∧ (((𝑎 “ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ((𝑏 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘)))))) → (𝑏 “ (ℤ≥‘(𝑛 + 1))) = {0}) | 
| 22 |   | simp3lr 1071 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ (𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)) ∧ (((𝑎 “ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ((𝑏 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘)))))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) | 
| 23 |   | oveq1 5929 | 
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑤 → (𝑧↑𝑘) = (𝑤↑𝑘)) | 
| 24 | 23 | oveq2d 5938 | 
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑤 → ((𝑎‘𝑘) · (𝑧↑𝑘)) = ((𝑎‘𝑘) · (𝑤↑𝑘))) | 
| 25 | 24 | sumeq2sdv 11535 | 
. . . . . . . . . . 11
⊢ (𝑧 = 𝑤 → Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑤↑𝑘))) | 
| 26 |   | fveq2 5558 | 
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → (𝑎‘𝑘) = (𝑎‘𝑗)) | 
| 27 |   | oveq2 5930 | 
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → (𝑤↑𝑘) = (𝑤↑𝑗)) | 
| 28 | 26, 27 | oveq12d 5940 | 
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑗 → ((𝑎‘𝑘) · (𝑤↑𝑘)) = ((𝑎‘𝑗) · (𝑤↑𝑗))) | 
| 29 | 28 | cbvsumv 11526 | 
. . . . . . . . . . 11
⊢
Σ𝑘 ∈
(0...𝑚)((𝑎‘𝑘) · (𝑤↑𝑘)) = Σ𝑗 ∈ (0...𝑚)((𝑎‘𝑗) · (𝑤↑𝑗)) | 
| 30 | 25, 29 | eqtrdi 2245 | 
. . . . . . . . . 10
⊢ (𝑧 = 𝑤 → Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)) = Σ𝑗 ∈ (0...𝑚)((𝑎‘𝑗) · (𝑤↑𝑗))) | 
| 31 | 30 | cbvmptv 4129 | 
. . . . . . . . 9
⊢ (𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘))) = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑚)((𝑎‘𝑗) · (𝑤↑𝑗))) | 
| 32 | 22, 31 | eqtrdi 2245 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ (𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)) ∧ (((𝑎 “ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ((𝑏 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘)))))) → 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑚)((𝑎‘𝑗) · (𝑤↑𝑗)))) | 
| 33 |   | simp3rr 1073 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ (𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)) ∧ (((𝑎 “ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ((𝑏 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘)))))) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘)))) | 
| 34 | 23 | oveq2d 5938 | 
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑤 → ((𝑏‘𝑘) · (𝑧↑𝑘)) = ((𝑏‘𝑘) · (𝑤↑𝑘))) | 
| 35 | 34 | sumeq2sdv 11535 | 
. . . . . . . . . . 11
⊢ (𝑧 = 𝑤 → Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑤↑𝑘))) | 
| 36 |   | fveq2 5558 | 
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → (𝑏‘𝑘) = (𝑏‘𝑗)) | 
| 37 | 36, 27 | oveq12d 5940 | 
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑗 → ((𝑏‘𝑘) · (𝑤↑𝑘)) = ((𝑏‘𝑗) · (𝑤↑𝑗))) | 
| 38 | 37 | cbvsumv 11526 | 
. . . . . . . . . . 11
⊢
Σ𝑘 ∈
(0...𝑛)((𝑏‘𝑘) · (𝑤↑𝑘)) = Σ𝑗 ∈ (0...𝑛)((𝑏‘𝑗) · (𝑤↑𝑗)) | 
| 39 | 35, 38 | eqtrdi 2245 | 
. . . . . . . . . 10
⊢ (𝑧 = 𝑤 → Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘)) = Σ𝑗 ∈ (0...𝑛)((𝑏‘𝑗) · (𝑤↑𝑗))) | 
| 40 | 39 | cbvmptv 4129 | 
. . . . . . . . 9
⊢ (𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘))) = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑏‘𝑗) · (𝑤↑𝑗))) | 
| 41 | 33, 40 | eqtrdi 2245 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ (𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)) ∧ (((𝑎 “ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ((𝑏 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘)))))) → 𝐺 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑏‘𝑗) · (𝑤↑𝑗)))) | 
| 42 |   | plymul.4 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) | 
| 43 | 11, 42 | sylan 283 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ (𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)) ∧ (((𝑎 “ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ((𝑏 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘)))))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) | 
| 44 | 12, 13, 15, 16, 17, 18, 19, 20, 21, 32, 41, 43 | plymullem 14986 | 
. . . . . . 7
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ (𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)) ∧ (((𝑎 “ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ((𝑏 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘)))))) → (𝐹 ∘𝑓 · 𝐺) ∈ (Poly‘𝑆)) | 
| 45 | 44 | 3expia 1207 | 
. . . . . 6
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ (𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → ((((𝑎 “ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ((𝑏 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘))))) → (𝐹 ∘𝑓 · 𝐺) ∈ (Poly‘𝑆))) | 
| 46 | 45 | rexlimdvva 2622 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
→ (∃𝑎 ∈
((𝑆 ∪ {0})
↑𝑚 ℕ0)∃𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)(((𝑎
“ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ((𝑏 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘))))) → (𝐹 ∘𝑓 · 𝐺) ∈ (Poly‘𝑆))) | 
| 47 | 10, 46 | biimtrrid 153 | 
. . . 4
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
→ ((∃𝑎 ∈
((𝑆 ∪ {0})
↑𝑚 ℕ0)((𝑎 “ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ∃𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)((𝑏
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘))))) → (𝐹 ∘𝑓 · 𝐺) ∈ (Poly‘𝑆))) | 
| 48 | 47 | rexlimdvva 2622 | 
. . 3
⊢ (𝜑 → (∃𝑚 ∈ ℕ0 ∃𝑛 ∈ ℕ0
(∃𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)((𝑎 “ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ∃𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)((𝑏
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘))))) → (𝐹 ∘𝑓 · 𝐺) ∈ (Poly‘𝑆))) | 
| 49 | 9, 48 | biimtrrid 153 | 
. 2
⊢ (𝜑 → ((∃𝑚 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)((𝑎 “ (ℤ≥‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎‘𝑘) · (𝑧↑𝑘)))) ∧ ∃𝑛 ∈ ℕ0 ∃𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)((𝑏
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏‘𝑘) · (𝑧↑𝑘))))) → (𝐹 ∘𝑓 · 𝐺) ∈ (Poly‘𝑆))) | 
| 50 | 4, 8, 49 | mp2and 433 | 
1
⊢ (𝜑 → (𝐹 ∘𝑓 · 𝐺) ∈ (Poly‘𝑆)) |