ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpcxpmul2 Unicode version

Theorem rpcxpmul2 15581
Description: Product of exponents law for complex exponentiation. Variation on cxpmul 15580 with more general conditions on  A and  B when  C is a nonnegative integer. (Contributed by Mario Carneiro, 9-Aug-2014.)
Assertion
Ref Expression
rpcxpmul2  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e. 
NN0 )  ->  ( A  ^c  ( B  x.  C ) )  =  ( ( A  ^c  B ) ^ C ) )

Proof of Theorem rpcxpmul2
Dummy variables  x  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6008 . . . . . . 7  |-  ( x  =  0  ->  ( B  x.  x )  =  ( B  x.  0 ) )
21oveq2d 6016 . . . . . 6  |-  ( x  =  0  ->  ( A  ^c  ( B  x.  x ) )  =  ( A  ^c  ( B  x.  0 ) ) )
3 oveq2 6008 . . . . . 6  |-  ( x  =  0  ->  (
( A  ^c  B ) ^ x
)  =  ( ( A  ^c  B ) ^ 0 ) )
42, 3eqeq12d 2244 . . . . 5  |-  ( x  =  0  ->  (
( A  ^c 
( B  x.  x
) )  =  ( ( A  ^c  B ) ^ x
)  <->  ( A  ^c  ( B  x.  0 ) )  =  ( ( A  ^c  B ) ^ 0 ) ) )
54imbi2d 230 . . . 4  |-  ( x  =  0  ->  (
( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  ( B  x.  x ) )  =  ( ( A  ^c  B ) ^ x
) )  <->  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  ( B  x.  0 ) )  =  ( ( A  ^c  B ) ^ 0 ) ) ) )
6 oveq2 6008 . . . . . . 7  |-  ( x  =  k  ->  ( B  x.  x )  =  ( B  x.  k ) )
76oveq2d 6016 . . . . . 6  |-  ( x  =  k  ->  ( A  ^c  ( B  x.  x ) )  =  ( A  ^c  ( B  x.  k ) ) )
8 oveq2 6008 . . . . . 6  |-  ( x  =  k  ->  (
( A  ^c  B ) ^ x
)  =  ( ( A  ^c  B ) ^ k ) )
97, 8eqeq12d 2244 . . . . 5  |-  ( x  =  k  ->  (
( A  ^c 
( B  x.  x
) )  =  ( ( A  ^c  B ) ^ x
)  <->  ( A  ^c  ( B  x.  k ) )  =  ( ( A  ^c  B ) ^ k
) ) )
109imbi2d 230 . . . 4  |-  ( x  =  k  ->  (
( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  ( B  x.  x ) )  =  ( ( A  ^c  B ) ^ x
) )  <->  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  ( B  x.  k ) )  =  ( ( A  ^c  B ) ^ k ) ) ) )
11 oveq2 6008 . . . . . . 7  |-  ( x  =  ( k  +  1 )  ->  ( B  x.  x )  =  ( B  x.  ( k  +  1 ) ) )
1211oveq2d 6016 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  ( A  ^c  ( B  x.  x ) )  =  ( A  ^c  ( B  x.  ( k  +  1 ) ) ) )
13 oveq2 6008 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  (
( A  ^c  B ) ^ x
)  =  ( ( A  ^c  B ) ^ ( k  +  1 ) ) )
1412, 13eqeq12d 2244 . . . . 5  |-  ( x  =  ( k  +  1 )  ->  (
( A  ^c 
( B  x.  x
) )  =  ( ( A  ^c  B ) ^ x
)  <->  ( A  ^c  ( B  x.  ( k  +  1 ) ) )  =  ( ( A  ^c  B ) ^ (
k  +  1 ) ) ) )
1514imbi2d 230 . . . 4  |-  ( x  =  ( k  +  1 )  ->  (
( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  ( B  x.  x ) )  =  ( ( A  ^c  B ) ^ x
) )  <->  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  ( B  x.  ( k  +  1 ) ) )  =  ( ( A  ^c  B ) ^ ( k  +  1 ) ) ) ) )
16 oveq2 6008 . . . . . . 7  |-  ( x  =  C  ->  ( B  x.  x )  =  ( B  x.  C ) )
1716oveq2d 6016 . . . . . 6  |-  ( x  =  C  ->  ( A  ^c  ( B  x.  x ) )  =  ( A  ^c  ( B  x.  C ) ) )
18 oveq2 6008 . . . . . 6  |-  ( x  =  C  ->  (
( A  ^c  B ) ^ x
)  =  ( ( A  ^c  B ) ^ C ) )
1917, 18eqeq12d 2244 . . . . 5  |-  ( x  =  C  ->  (
( A  ^c 
( B  x.  x
) )  =  ( ( A  ^c  B ) ^ x
)  <->  ( A  ^c  ( B  x.  C ) )  =  ( ( A  ^c  B ) ^ C
) ) )
2019imbi2d 230 . . . 4  |-  ( x  =  C  ->  (
( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  ( B  x.  x ) )  =  ( ( A  ^c  B ) ^ x
) )  <->  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  ( B  x.  C ) )  =  ( ( A  ^c  B ) ^ C ) ) ) )
21 rpcxp0 15566 . . . . . 6  |-  ( A  e.  RR+  ->  ( A  ^c  0 )  =  1 )
2221adantr 276 . . . . 5  |-  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  0 )  =  1 )
23 mul01 8531 . . . . . . 7  |-  ( B  e.  CC  ->  ( B  x.  0 )  =  0 )
2423adantl 277 . . . . . 6  |-  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( B  x.  0 )  =  0 )
2524oveq2d 6016 . . . . 5  |-  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  ( B  x.  0 ) )  =  ( A  ^c  0 ) )
26 rpcncxpcl 15570 . . . . . 6  |-  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  B )  e.  CC )
2726exp0d 10884 . . . . 5  |-  ( ( A  e.  RR+  /\  B  e.  CC )  ->  (
( A  ^c  B ) ^ 0 )  =  1 )
2822, 25, 273eqtr4d 2272 . . . 4  |-  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  ( B  x.  0 ) )  =  ( ( A  ^c  B ) ^ 0 ) )
29 oveq1 6007 . . . . . . 7  |-  ( ( A  ^c  ( B  x.  k ) )  =  ( ( A  ^c  B ) ^ k )  ->  ( ( A  ^c  ( B  x.  k ) )  x.  ( A  ^c  B ) )  =  ( ( ( A  ^c  B ) ^ k )  x.  ( A  ^c  B ) ) )
30 simplr 528 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  B  e.  CC )
31 nn0cn 9375 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  k  e.  CC )
3231adantl 277 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  k  e.  CC )
33 1cnd 8158 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  1  e.  CC )
3430, 32, 33adddid 8167 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( B  x.  ( k  +  1 ) )  =  ( ( B  x.  k
)  +  ( B  x.  1 ) ) )
3530mulridd 8159 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( B  x.  1 )  =  B )
3635oveq2d 6016 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( ( B  x.  k )  +  ( B  x.  1 ) )  =  ( ( B  x.  k
)  +  B ) )
3734, 36eqtrd 2262 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( B  x.  ( k  +  1 ) )  =  ( ( B  x.  k
)  +  B ) )
3837oveq2d 6016 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( A  ^c  ( B  x.  ( k  +  1 ) ) )  =  ( A  ^c 
( ( B  x.  k )  +  B
) ) )
39 simpll 527 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  A  e.  RR+ )
4030, 32mulcld 8163 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( B  x.  k )  e.  CC )
41 rpcxpadd 15573 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  ( B  x.  k )  e.  CC  /\  B  e.  CC )  ->  ( A  ^c  ( ( B  x.  k )  +  B ) )  =  ( ( A  ^c  ( B  x.  k ) )  x.  ( A  ^c  B ) ) )
4239, 40, 30, 41syl3anc 1271 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( A  ^c  ( ( B  x.  k )  +  B ) )  =  ( ( A  ^c  ( B  x.  k ) )  x.  ( A  ^c  B ) ) )
4338, 42eqtrd 2262 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( A  ^c  ( B  x.  ( k  +  1 ) ) )  =  ( ( A  ^c  ( B  x.  k ) )  x.  ( A  ^c  B ) ) )
44 expp1 10763 . . . . . . . . 9  |-  ( ( ( A  ^c  B )  e.  CC  /\  k  e.  NN0 )  ->  ( ( A  ^c  B ) ^ (
k  +  1 ) )  =  ( ( ( A  ^c  B ) ^ k
)  x.  ( A  ^c  B ) ) )
4526, 44sylan 283 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( ( A  ^c  B ) ^ ( k  +  1 ) )  =  ( ( ( A  ^c  B ) ^ k )  x.  ( A  ^c  B ) ) )
4643, 45eqeq12d 2244 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( ( A  ^c  ( B  x.  ( k  +  1 ) ) )  =  ( ( A  ^c  B ) ^ ( k  +  1 ) )  <->  ( ( A  ^c  ( B  x.  k ) )  x.  ( A  ^c  B ) )  =  ( ( ( A  ^c  B ) ^ k )  x.  ( A  ^c  B ) ) ) )
4729, 46imbitrrid 156 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( ( A  ^c  ( B  x.  k ) )  =  ( ( A  ^c  B ) ^ k )  -> 
( A  ^c 
( B  x.  (
k  +  1 ) ) )  =  ( ( A  ^c  B ) ^ (
k  +  1 ) ) ) )
4847expcom 116 . . . . 5  |-  ( k  e.  NN0  ->  ( ( A  e.  RR+  /\  B  e.  CC )  ->  (
( A  ^c 
( B  x.  k
) )  =  ( ( A  ^c  B ) ^ k
)  ->  ( A  ^c  ( B  x.  ( k  +  1 ) ) )  =  ( ( A  ^c  B ) ^ (
k  +  1 ) ) ) ) )
4948a2d 26 . . . 4  |-  ( k  e.  NN0  ->  ( ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  ( B  x.  k ) )  =  ( ( A  ^c  B ) ^ k
) )  ->  (
( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  ( B  x.  ( k  +  1 ) ) )  =  ( ( A  ^c  B ) ^ (
k  +  1 ) ) ) ) )
505, 10, 15, 20, 28, 49nn0ind 9557 . . 3  |-  ( C  e.  NN0  ->  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  ( B  x.  C ) )  =  ( ( A  ^c  B ) ^ C ) ) )
5150com12 30 . 2  |-  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( C  e.  NN0  ->  ( A  ^c  ( B  x.  C ) )  =  ( ( A  ^c  B ) ^ C ) ) )
52513impia 1224 1  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e. 
NN0 )  ->  ( A  ^c  ( B  x.  C ) )  =  ( ( A  ^c  B ) ^ C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200  (class class class)co 6000   CCcc 7993   0cc0 7995   1c1 7996    + caddc 7998    x. cmul 8000   NN0cn0 9365   RR+crp 9845   ^cexp 10755    ^c ccxp 15525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115  ax-pre-suploc 8116  ax-addf 8117  ax-mulf 8118
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-disj 4059  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-isom 5326  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-of 6216  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-frec 6535  df-1o 6560  df-oadd 6564  df-er 6678  df-map 6795  df-pm 6796  df-en 6886  df-dom 6887  df-fin 6888  df-sup 7147  df-inf 7148  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-xneg 9964  df-xadd 9965  df-ioo 10084  df-ico 10086  df-icc 10087  df-fz 10201  df-fzo 10335  df-seqfrec 10665  df-exp 10756  df-fac 10943  df-bc 10965  df-ihash 10993  df-shft 11321  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-clim 11785  df-sumdc 11860  df-ef 12154  df-e 12155  df-rest 13269  df-topgen 13288  df-psmet 14501  df-xmet 14502  df-met 14503  df-bl 14504  df-mopn 14505  df-top 14666  df-topon 14679  df-bases 14711  df-ntr 14764  df-cn 14856  df-cnp 14857  df-tx 14921  df-cncf 15239  df-limced 15324  df-dvap 15325  df-relog 15526  df-rpcxp 15527
This theorem is referenced by:  rpcxpmul2d  15600
  Copyright terms: Public domain W3C validator