ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpcxpmul2 Unicode version

Theorem rpcxpmul2 15235
Description: Product of exponents law for complex exponentiation. Variation on cxpmul 15234 with more general conditions on  A and  B when  C is a nonnegative integer. (Contributed by Mario Carneiro, 9-Aug-2014.)
Assertion
Ref Expression
rpcxpmul2  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e. 
NN0 )  ->  ( A  ^c  ( B  x.  C ) )  =  ( ( A  ^c  B ) ^ C ) )

Proof of Theorem rpcxpmul2
Dummy variables  x  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5933 . . . . . . 7  |-  ( x  =  0  ->  ( B  x.  x )  =  ( B  x.  0 ) )
21oveq2d 5941 . . . . . 6  |-  ( x  =  0  ->  ( A  ^c  ( B  x.  x ) )  =  ( A  ^c  ( B  x.  0 ) ) )
3 oveq2 5933 . . . . . 6  |-  ( x  =  0  ->  (
( A  ^c  B ) ^ x
)  =  ( ( A  ^c  B ) ^ 0 ) )
42, 3eqeq12d 2211 . . . . 5  |-  ( x  =  0  ->  (
( A  ^c 
( B  x.  x
) )  =  ( ( A  ^c  B ) ^ x
)  <->  ( A  ^c  ( B  x.  0 ) )  =  ( ( A  ^c  B ) ^ 0 ) ) )
54imbi2d 230 . . . 4  |-  ( x  =  0  ->  (
( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  ( B  x.  x ) )  =  ( ( A  ^c  B ) ^ x
) )  <->  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  ( B  x.  0 ) )  =  ( ( A  ^c  B ) ^ 0 ) ) ) )
6 oveq2 5933 . . . . . . 7  |-  ( x  =  k  ->  ( B  x.  x )  =  ( B  x.  k ) )
76oveq2d 5941 . . . . . 6  |-  ( x  =  k  ->  ( A  ^c  ( B  x.  x ) )  =  ( A  ^c  ( B  x.  k ) ) )
8 oveq2 5933 . . . . . 6  |-  ( x  =  k  ->  (
( A  ^c  B ) ^ x
)  =  ( ( A  ^c  B ) ^ k ) )
97, 8eqeq12d 2211 . . . . 5  |-  ( x  =  k  ->  (
( A  ^c 
( B  x.  x
) )  =  ( ( A  ^c  B ) ^ x
)  <->  ( A  ^c  ( B  x.  k ) )  =  ( ( A  ^c  B ) ^ k
) ) )
109imbi2d 230 . . . 4  |-  ( x  =  k  ->  (
( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  ( B  x.  x ) )  =  ( ( A  ^c  B ) ^ x
) )  <->  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  ( B  x.  k ) )  =  ( ( A  ^c  B ) ^ k ) ) ) )
11 oveq2 5933 . . . . . . 7  |-  ( x  =  ( k  +  1 )  ->  ( B  x.  x )  =  ( B  x.  ( k  +  1 ) ) )
1211oveq2d 5941 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  ( A  ^c  ( B  x.  x ) )  =  ( A  ^c  ( B  x.  ( k  +  1 ) ) ) )
13 oveq2 5933 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  (
( A  ^c  B ) ^ x
)  =  ( ( A  ^c  B ) ^ ( k  +  1 ) ) )
1412, 13eqeq12d 2211 . . . . 5  |-  ( x  =  ( k  +  1 )  ->  (
( A  ^c 
( B  x.  x
) )  =  ( ( A  ^c  B ) ^ x
)  <->  ( A  ^c  ( B  x.  ( k  +  1 ) ) )  =  ( ( A  ^c  B ) ^ (
k  +  1 ) ) ) )
1514imbi2d 230 . . . 4  |-  ( x  =  ( k  +  1 )  ->  (
( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  ( B  x.  x ) )  =  ( ( A  ^c  B ) ^ x
) )  <->  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  ( B  x.  ( k  +  1 ) ) )  =  ( ( A  ^c  B ) ^ ( k  +  1 ) ) ) ) )
16 oveq2 5933 . . . . . . 7  |-  ( x  =  C  ->  ( B  x.  x )  =  ( B  x.  C ) )
1716oveq2d 5941 . . . . . 6  |-  ( x  =  C  ->  ( A  ^c  ( B  x.  x ) )  =  ( A  ^c  ( B  x.  C ) ) )
18 oveq2 5933 . . . . . 6  |-  ( x  =  C  ->  (
( A  ^c  B ) ^ x
)  =  ( ( A  ^c  B ) ^ C ) )
1917, 18eqeq12d 2211 . . . . 5  |-  ( x  =  C  ->  (
( A  ^c 
( B  x.  x
) )  =  ( ( A  ^c  B ) ^ x
)  <->  ( A  ^c  ( B  x.  C ) )  =  ( ( A  ^c  B ) ^ C
) ) )
2019imbi2d 230 . . . 4  |-  ( x  =  C  ->  (
( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  ( B  x.  x ) )  =  ( ( A  ^c  B ) ^ x
) )  <->  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  ( B  x.  C ) )  =  ( ( A  ^c  B ) ^ C ) ) ) )
21 rpcxp0 15220 . . . . . 6  |-  ( A  e.  RR+  ->  ( A  ^c  0 )  =  1 )
2221adantr 276 . . . . 5  |-  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  0 )  =  1 )
23 mul01 8434 . . . . . . 7  |-  ( B  e.  CC  ->  ( B  x.  0 )  =  0 )
2423adantl 277 . . . . . 6  |-  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( B  x.  0 )  =  0 )
2524oveq2d 5941 . . . . 5  |-  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  ( B  x.  0 ) )  =  ( A  ^c  0 ) )
26 rpcncxpcl 15224 . . . . . 6  |-  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  B )  e.  CC )
2726exp0d 10778 . . . . 5  |-  ( ( A  e.  RR+  /\  B  e.  CC )  ->  (
( A  ^c  B ) ^ 0 )  =  1 )
2822, 25, 273eqtr4d 2239 . . . 4  |-  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  ( B  x.  0 ) )  =  ( ( A  ^c  B ) ^ 0 ) )
29 oveq1 5932 . . . . . . 7  |-  ( ( A  ^c  ( B  x.  k ) )  =  ( ( A  ^c  B ) ^ k )  ->  ( ( A  ^c  ( B  x.  k ) )  x.  ( A  ^c  B ) )  =  ( ( ( A  ^c  B ) ^ k )  x.  ( A  ^c  B ) ) )
30 simplr 528 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  B  e.  CC )
31 nn0cn 9278 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  k  e.  CC )
3231adantl 277 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  k  e.  CC )
33 1cnd 8061 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  1  e.  CC )
3430, 32, 33adddid 8070 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( B  x.  ( k  +  1 ) )  =  ( ( B  x.  k
)  +  ( B  x.  1 ) ) )
3530mulridd 8062 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( B  x.  1 )  =  B )
3635oveq2d 5941 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( ( B  x.  k )  +  ( B  x.  1 ) )  =  ( ( B  x.  k
)  +  B ) )
3734, 36eqtrd 2229 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( B  x.  ( k  +  1 ) )  =  ( ( B  x.  k
)  +  B ) )
3837oveq2d 5941 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( A  ^c  ( B  x.  ( k  +  1 ) ) )  =  ( A  ^c 
( ( B  x.  k )  +  B
) ) )
39 simpll 527 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  A  e.  RR+ )
4030, 32mulcld 8066 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( B  x.  k )  e.  CC )
41 rpcxpadd 15227 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  ( B  x.  k )  e.  CC  /\  B  e.  CC )  ->  ( A  ^c  ( ( B  x.  k )  +  B ) )  =  ( ( A  ^c  ( B  x.  k ) )  x.  ( A  ^c  B ) ) )
4239, 40, 30, 41syl3anc 1249 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( A  ^c  ( ( B  x.  k )  +  B ) )  =  ( ( A  ^c  ( B  x.  k ) )  x.  ( A  ^c  B ) ) )
4338, 42eqtrd 2229 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( A  ^c  ( B  x.  ( k  +  1 ) ) )  =  ( ( A  ^c  ( B  x.  k ) )  x.  ( A  ^c  B ) ) )
44 expp1 10657 . . . . . . . . 9  |-  ( ( ( A  ^c  B )  e.  CC  /\  k  e.  NN0 )  ->  ( ( A  ^c  B ) ^ (
k  +  1 ) )  =  ( ( ( A  ^c  B ) ^ k
)  x.  ( A  ^c  B ) ) )
4526, 44sylan 283 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( ( A  ^c  B ) ^ ( k  +  1 ) )  =  ( ( ( A  ^c  B ) ^ k )  x.  ( A  ^c  B ) ) )
4643, 45eqeq12d 2211 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( ( A  ^c  ( B  x.  ( k  +  1 ) ) )  =  ( ( A  ^c  B ) ^ ( k  +  1 ) )  <->  ( ( A  ^c  ( B  x.  k ) )  x.  ( A  ^c  B ) )  =  ( ( ( A  ^c  B ) ^ k )  x.  ( A  ^c  B ) ) ) )
4729, 46imbitrrid 156 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( ( A  ^c  ( B  x.  k ) )  =  ( ( A  ^c  B ) ^ k )  -> 
( A  ^c 
( B  x.  (
k  +  1 ) ) )  =  ( ( A  ^c  B ) ^ (
k  +  1 ) ) ) )
4847expcom 116 . . . . 5  |-  ( k  e.  NN0  ->  ( ( A  e.  RR+  /\  B  e.  CC )  ->  (
( A  ^c 
( B  x.  k
) )  =  ( ( A  ^c  B ) ^ k
)  ->  ( A  ^c  ( B  x.  ( k  +  1 ) ) )  =  ( ( A  ^c  B ) ^ (
k  +  1 ) ) ) ) )
4948a2d 26 . . . 4  |-  ( k  e.  NN0  ->  ( ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  ( B  x.  k ) )  =  ( ( A  ^c  B ) ^ k
) )  ->  (
( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  ( B  x.  ( k  +  1 ) ) )  =  ( ( A  ^c  B ) ^ (
k  +  1 ) ) ) ) )
505, 10, 15, 20, 28, 49nn0ind 9459 . . 3  |-  ( C  e.  NN0  ->  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  ( B  x.  C ) )  =  ( ( A  ^c  B ) ^ C ) ) )
5150com12 30 . 2  |-  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( C  e.  NN0  ->  ( A  ^c  ( B  x.  C ) )  =  ( ( A  ^c  B ) ^ C ) ) )
52513impia 1202 1  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e. 
NN0 )  ->  ( A  ^c  ( B  x.  C ) )  =  ( ( A  ^c  B ) ^ C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167  (class class class)co 5925   CCcc 7896   0cc0 7898   1c1 7899    + caddc 7901    x. cmul 7903   NN0cn0 9268   RR+crp 9747   ^cexp 10649    ^c ccxp 15179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018  ax-pre-suploc 8019  ax-addf 8020  ax-mulf 8021
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-disj 4012  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-of 6139  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-map 6718  df-pm 6719  df-en 6809  df-dom 6810  df-fin 6811  df-sup 7059  df-inf 7060  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-xneg 9866  df-xadd 9867  df-ioo 9986  df-ico 9988  df-icc 9989  df-fz 10103  df-fzo 10237  df-seqfrec 10559  df-exp 10650  df-fac 10837  df-bc 10859  df-ihash 10887  df-shft 10999  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-clim 11463  df-sumdc 11538  df-ef 11832  df-e 11833  df-rest 12945  df-topgen 12964  df-psmet 14177  df-xmet 14178  df-met 14179  df-bl 14180  df-mopn 14181  df-top 14320  df-topon 14333  df-bases 14365  df-ntr 14418  df-cn 14510  df-cnp 14511  df-tx 14575  df-cncf 14893  df-limced 14978  df-dvap 14979  df-relog 15180  df-rpcxp 15181
This theorem is referenced by:  rpcxpmul2d  15254
  Copyright terms: Public domain W3C validator