ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpcxpmul2 Unicode version

Theorem rpcxpmul2 15122
Description: Product of exponents law for complex exponentiation. Variation on cxpmul 15121 with more general conditions on  A and  B when  C is a nonnegative integer. (Contributed by Mario Carneiro, 9-Aug-2014.)
Assertion
Ref Expression
rpcxpmul2  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e. 
NN0 )  ->  ( A  ^c  ( B  x.  C ) )  =  ( ( A  ^c  B ) ^ C ) )

Proof of Theorem rpcxpmul2
Dummy variables  x  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5930 . . . . . . 7  |-  ( x  =  0  ->  ( B  x.  x )  =  ( B  x.  0 ) )
21oveq2d 5938 . . . . . 6  |-  ( x  =  0  ->  ( A  ^c  ( B  x.  x ) )  =  ( A  ^c  ( B  x.  0 ) ) )
3 oveq2 5930 . . . . . 6  |-  ( x  =  0  ->  (
( A  ^c  B ) ^ x
)  =  ( ( A  ^c  B ) ^ 0 ) )
42, 3eqeq12d 2211 . . . . 5  |-  ( x  =  0  ->  (
( A  ^c 
( B  x.  x
) )  =  ( ( A  ^c  B ) ^ x
)  <->  ( A  ^c  ( B  x.  0 ) )  =  ( ( A  ^c  B ) ^ 0 ) ) )
54imbi2d 230 . . . 4  |-  ( x  =  0  ->  (
( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  ( B  x.  x ) )  =  ( ( A  ^c  B ) ^ x
) )  <->  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  ( B  x.  0 ) )  =  ( ( A  ^c  B ) ^ 0 ) ) ) )
6 oveq2 5930 . . . . . . 7  |-  ( x  =  k  ->  ( B  x.  x )  =  ( B  x.  k ) )
76oveq2d 5938 . . . . . 6  |-  ( x  =  k  ->  ( A  ^c  ( B  x.  x ) )  =  ( A  ^c  ( B  x.  k ) ) )
8 oveq2 5930 . . . . . 6  |-  ( x  =  k  ->  (
( A  ^c  B ) ^ x
)  =  ( ( A  ^c  B ) ^ k ) )
97, 8eqeq12d 2211 . . . . 5  |-  ( x  =  k  ->  (
( A  ^c 
( B  x.  x
) )  =  ( ( A  ^c  B ) ^ x
)  <->  ( A  ^c  ( B  x.  k ) )  =  ( ( A  ^c  B ) ^ k
) ) )
109imbi2d 230 . . . 4  |-  ( x  =  k  ->  (
( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  ( B  x.  x ) )  =  ( ( A  ^c  B ) ^ x
) )  <->  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  ( B  x.  k ) )  =  ( ( A  ^c  B ) ^ k ) ) ) )
11 oveq2 5930 . . . . . . 7  |-  ( x  =  ( k  +  1 )  ->  ( B  x.  x )  =  ( B  x.  ( k  +  1 ) ) )
1211oveq2d 5938 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  ( A  ^c  ( B  x.  x ) )  =  ( A  ^c  ( B  x.  ( k  +  1 ) ) ) )
13 oveq2 5930 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  (
( A  ^c  B ) ^ x
)  =  ( ( A  ^c  B ) ^ ( k  +  1 ) ) )
1412, 13eqeq12d 2211 . . . . 5  |-  ( x  =  ( k  +  1 )  ->  (
( A  ^c 
( B  x.  x
) )  =  ( ( A  ^c  B ) ^ x
)  <->  ( A  ^c  ( B  x.  ( k  +  1 ) ) )  =  ( ( A  ^c  B ) ^ (
k  +  1 ) ) ) )
1514imbi2d 230 . . . 4  |-  ( x  =  ( k  +  1 )  ->  (
( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  ( B  x.  x ) )  =  ( ( A  ^c  B ) ^ x
) )  <->  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  ( B  x.  ( k  +  1 ) ) )  =  ( ( A  ^c  B ) ^ ( k  +  1 ) ) ) ) )
16 oveq2 5930 . . . . . . 7  |-  ( x  =  C  ->  ( B  x.  x )  =  ( B  x.  C ) )
1716oveq2d 5938 . . . . . 6  |-  ( x  =  C  ->  ( A  ^c  ( B  x.  x ) )  =  ( A  ^c  ( B  x.  C ) ) )
18 oveq2 5930 . . . . . 6  |-  ( x  =  C  ->  (
( A  ^c  B ) ^ x
)  =  ( ( A  ^c  B ) ^ C ) )
1917, 18eqeq12d 2211 . . . . 5  |-  ( x  =  C  ->  (
( A  ^c 
( B  x.  x
) )  =  ( ( A  ^c  B ) ^ x
)  <->  ( A  ^c  ( B  x.  C ) )  =  ( ( A  ^c  B ) ^ C
) ) )
2019imbi2d 230 . . . 4  |-  ( x  =  C  ->  (
( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  ( B  x.  x ) )  =  ( ( A  ^c  B ) ^ x
) )  <->  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  ( B  x.  C ) )  =  ( ( A  ^c  B ) ^ C ) ) ) )
21 rpcxp0 15107 . . . . . 6  |-  ( A  e.  RR+  ->  ( A  ^c  0 )  =  1 )
2221adantr 276 . . . . 5  |-  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  0 )  =  1 )
23 mul01 8413 . . . . . . 7  |-  ( B  e.  CC  ->  ( B  x.  0 )  =  0 )
2423adantl 277 . . . . . 6  |-  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( B  x.  0 )  =  0 )
2524oveq2d 5938 . . . . 5  |-  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  ( B  x.  0 ) )  =  ( A  ^c  0 ) )
26 rpcncxpcl 15111 . . . . . 6  |-  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  B )  e.  CC )
2726exp0d 10744 . . . . 5  |-  ( ( A  e.  RR+  /\  B  e.  CC )  ->  (
( A  ^c  B ) ^ 0 )  =  1 )
2822, 25, 273eqtr4d 2239 . . . 4  |-  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  ( B  x.  0 ) )  =  ( ( A  ^c  B ) ^ 0 ) )
29 oveq1 5929 . . . . . . 7  |-  ( ( A  ^c  ( B  x.  k ) )  =  ( ( A  ^c  B ) ^ k )  ->  ( ( A  ^c  ( B  x.  k ) )  x.  ( A  ^c  B ) )  =  ( ( ( A  ^c  B ) ^ k )  x.  ( A  ^c  B ) ) )
30 simplr 528 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  B  e.  CC )
31 nn0cn 9256 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  k  e.  CC )
3231adantl 277 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  k  e.  CC )
33 1cnd 8040 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  1  e.  CC )
3430, 32, 33adddid 8049 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( B  x.  ( k  +  1 ) )  =  ( ( B  x.  k
)  +  ( B  x.  1 ) ) )
3530mulridd 8041 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( B  x.  1 )  =  B )
3635oveq2d 5938 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( ( B  x.  k )  +  ( B  x.  1 ) )  =  ( ( B  x.  k
)  +  B ) )
3734, 36eqtrd 2229 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( B  x.  ( k  +  1 ) )  =  ( ( B  x.  k
)  +  B ) )
3837oveq2d 5938 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( A  ^c  ( B  x.  ( k  +  1 ) ) )  =  ( A  ^c 
( ( B  x.  k )  +  B
) ) )
39 simpll 527 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  A  e.  RR+ )
4030, 32mulcld 8045 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( B  x.  k )  e.  CC )
41 rpcxpadd 15114 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  ( B  x.  k )  e.  CC  /\  B  e.  CC )  ->  ( A  ^c  ( ( B  x.  k )  +  B ) )  =  ( ( A  ^c  ( B  x.  k ) )  x.  ( A  ^c  B ) ) )
4239, 40, 30, 41syl3anc 1249 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( A  ^c  ( ( B  x.  k )  +  B ) )  =  ( ( A  ^c  ( B  x.  k ) )  x.  ( A  ^c  B ) ) )
4338, 42eqtrd 2229 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( A  ^c  ( B  x.  ( k  +  1 ) ) )  =  ( ( A  ^c  ( B  x.  k ) )  x.  ( A  ^c  B ) ) )
44 expp1 10623 . . . . . . . . 9  |-  ( ( ( A  ^c  B )  e.  CC  /\  k  e.  NN0 )  ->  ( ( A  ^c  B ) ^ (
k  +  1 ) )  =  ( ( ( A  ^c  B ) ^ k
)  x.  ( A  ^c  B ) ) )
4526, 44sylan 283 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( ( A  ^c  B ) ^ ( k  +  1 ) )  =  ( ( ( A  ^c  B ) ^ k )  x.  ( A  ^c  B ) ) )
4643, 45eqeq12d 2211 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( ( A  ^c  ( B  x.  ( k  +  1 ) ) )  =  ( ( A  ^c  B ) ^ ( k  +  1 ) )  <->  ( ( A  ^c  ( B  x.  k ) )  x.  ( A  ^c  B ) )  =  ( ( ( A  ^c  B ) ^ k )  x.  ( A  ^c  B ) ) ) )
4729, 46imbitrrid 156 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( ( A  ^c  ( B  x.  k ) )  =  ( ( A  ^c  B ) ^ k )  -> 
( A  ^c 
( B  x.  (
k  +  1 ) ) )  =  ( ( A  ^c  B ) ^ (
k  +  1 ) ) ) )
4847expcom 116 . . . . 5  |-  ( k  e.  NN0  ->  ( ( A  e.  RR+  /\  B  e.  CC )  ->  (
( A  ^c 
( B  x.  k
) )  =  ( ( A  ^c  B ) ^ k
)  ->  ( A  ^c  ( B  x.  ( k  +  1 ) ) )  =  ( ( A  ^c  B ) ^ (
k  +  1 ) ) ) ) )
4948a2d 26 . . . 4  |-  ( k  e.  NN0  ->  ( ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  ( B  x.  k ) )  =  ( ( A  ^c  B ) ^ k
) )  ->  (
( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  ( B  x.  ( k  +  1 ) ) )  =  ( ( A  ^c  B ) ^ (
k  +  1 ) ) ) ) )
505, 10, 15, 20, 28, 49nn0ind 9437 . . 3  |-  ( C  e.  NN0  ->  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  ( B  x.  C ) )  =  ( ( A  ^c  B ) ^ C ) ) )
5150com12 30 . 2  |-  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( C  e.  NN0  ->  ( A  ^c  ( B  x.  C ) )  =  ( ( A  ^c  B ) ^ C ) ) )
52513impia 1202 1  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e. 
NN0 )  ->  ( A  ^c  ( B  x.  C ) )  =  ( ( A  ^c  B ) ^ C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167  (class class class)co 5922   CCcc 7875   0cc0 7877   1c1 7878    + caddc 7880    x. cmul 7882   NN0cn0 9246   RR+crp 9725   ^cexp 10615    ^c ccxp 15066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7968  ax-resscn 7969  ax-1cn 7970  ax-1re 7971  ax-icn 7972  ax-addcl 7973  ax-addrcl 7974  ax-mulcl 7975  ax-mulrcl 7976  ax-addcom 7977  ax-mulcom 7978  ax-addass 7979  ax-mulass 7980  ax-distr 7981  ax-i2m1 7982  ax-0lt1 7983  ax-1rid 7984  ax-0id 7985  ax-rnegex 7986  ax-precex 7987  ax-cnre 7988  ax-pre-ltirr 7989  ax-pre-ltwlin 7990  ax-pre-lttrn 7991  ax-pre-apti 7992  ax-pre-ltadd 7993  ax-pre-mulgt0 7994  ax-pre-mulext 7995  ax-arch 7996  ax-caucvg 7997  ax-pre-suploc 7998  ax-addf 7999  ax-mulf 8000
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-disj 4011  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-of 6135  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-map 6709  df-pm 6710  df-en 6800  df-dom 6801  df-fin 6802  df-sup 7048  df-inf 7049  df-pnf 8061  df-mnf 8062  df-xr 8063  df-ltxr 8064  df-le 8065  df-sub 8197  df-neg 8198  df-reap 8599  df-ap 8606  df-div 8697  df-inn 8988  df-2 9046  df-3 9047  df-4 9048  df-n0 9247  df-z 9324  df-uz 9599  df-q 9691  df-rp 9726  df-xneg 9844  df-xadd 9845  df-ioo 9964  df-ico 9966  df-icc 9967  df-fz 10081  df-fzo 10215  df-seqfrec 10525  df-exp 10616  df-fac 10803  df-bc 10825  df-ihash 10853  df-shft 10965  df-cj 10992  df-re 10993  df-im 10994  df-rsqrt 11148  df-abs 11149  df-clim 11428  df-sumdc 11503  df-ef 11797  df-e 11798  df-rest 12888  df-topgen 12907  df-psmet 14075  df-xmet 14076  df-met 14077  df-bl 14078  df-mopn 14079  df-top 14210  df-topon 14223  df-bases 14255  df-ntr 14308  df-cn 14400  df-cnp 14401  df-tx 14465  df-cncf 14783  df-limced 14868  df-dvap 14869  df-relog 15067  df-rpcxp 15068
This theorem is referenced by:  rpcxpmul2d  15141
  Copyright terms: Public domain W3C validator