ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpcxpmul2 GIF version

Theorem rpcxpmul2 15455
Description: Product of exponents law for complex exponentiation. Variation on cxpmul 15454 with more general conditions on 𝐴 and 𝐵 when 𝐶 is a nonnegative integer. (Contributed by Mario Carneiro, 9-Aug-2014.)
Assertion
Ref Expression
rpcxpmul2 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℕ0) → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝐶))

Proof of Theorem rpcxpmul2
Dummy variables 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5964 . . . . . . 7 (𝑥 = 0 → (𝐵 · 𝑥) = (𝐵 · 0))
21oveq2d 5972 . . . . . 6 (𝑥 = 0 → (𝐴𝑐(𝐵 · 𝑥)) = (𝐴𝑐(𝐵 · 0)))
3 oveq2 5964 . . . . . 6 (𝑥 = 0 → ((𝐴𝑐𝐵)↑𝑥) = ((𝐴𝑐𝐵)↑0))
42, 3eqeq12d 2221 . . . . 5 (𝑥 = 0 → ((𝐴𝑐(𝐵 · 𝑥)) = ((𝐴𝑐𝐵)↑𝑥) ↔ (𝐴𝑐(𝐵 · 0)) = ((𝐴𝑐𝐵)↑0)))
54imbi2d 230 . . . 4 (𝑥 = 0 → (((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 𝑥)) = ((𝐴𝑐𝐵)↑𝑥)) ↔ ((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 0)) = ((𝐴𝑐𝐵)↑0))))
6 oveq2 5964 . . . . . . 7 (𝑥 = 𝑘 → (𝐵 · 𝑥) = (𝐵 · 𝑘))
76oveq2d 5972 . . . . . 6 (𝑥 = 𝑘 → (𝐴𝑐(𝐵 · 𝑥)) = (𝐴𝑐(𝐵 · 𝑘)))
8 oveq2 5964 . . . . . 6 (𝑥 = 𝑘 → ((𝐴𝑐𝐵)↑𝑥) = ((𝐴𝑐𝐵)↑𝑘))
97, 8eqeq12d 2221 . . . . 5 (𝑥 = 𝑘 → ((𝐴𝑐(𝐵 · 𝑥)) = ((𝐴𝑐𝐵)↑𝑥) ↔ (𝐴𝑐(𝐵 · 𝑘)) = ((𝐴𝑐𝐵)↑𝑘)))
109imbi2d 230 . . . 4 (𝑥 = 𝑘 → (((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 𝑥)) = ((𝐴𝑐𝐵)↑𝑥)) ↔ ((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 𝑘)) = ((𝐴𝑐𝐵)↑𝑘))))
11 oveq2 5964 . . . . . . 7 (𝑥 = (𝑘 + 1) → (𝐵 · 𝑥) = (𝐵 · (𝑘 + 1)))
1211oveq2d 5972 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝐴𝑐(𝐵 · 𝑥)) = (𝐴𝑐(𝐵 · (𝑘 + 1))))
13 oveq2 5964 . . . . . 6 (𝑥 = (𝑘 + 1) → ((𝐴𝑐𝐵)↑𝑥) = ((𝐴𝑐𝐵)↑(𝑘 + 1)))
1412, 13eqeq12d 2221 . . . . 5 (𝑥 = (𝑘 + 1) → ((𝐴𝑐(𝐵 · 𝑥)) = ((𝐴𝑐𝐵)↑𝑥) ↔ (𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐𝐵)↑(𝑘 + 1))))
1514imbi2d 230 . . . 4 (𝑥 = (𝑘 + 1) → (((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 𝑥)) = ((𝐴𝑐𝐵)↑𝑥)) ↔ ((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐𝐵)↑(𝑘 + 1)))))
16 oveq2 5964 . . . . . . 7 (𝑥 = 𝐶 → (𝐵 · 𝑥) = (𝐵 · 𝐶))
1716oveq2d 5972 . . . . . 6 (𝑥 = 𝐶 → (𝐴𝑐(𝐵 · 𝑥)) = (𝐴𝑐(𝐵 · 𝐶)))
18 oveq2 5964 . . . . . 6 (𝑥 = 𝐶 → ((𝐴𝑐𝐵)↑𝑥) = ((𝐴𝑐𝐵)↑𝐶))
1917, 18eqeq12d 2221 . . . . 5 (𝑥 = 𝐶 → ((𝐴𝑐(𝐵 · 𝑥)) = ((𝐴𝑐𝐵)↑𝑥) ↔ (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝐶)))
2019imbi2d 230 . . . 4 (𝑥 = 𝐶 → (((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 𝑥)) = ((𝐴𝑐𝐵)↑𝑥)) ↔ ((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝐶))))
21 rpcxp0 15440 . . . . . 6 (𝐴 ∈ ℝ+ → (𝐴𝑐0) = 1)
2221adantr 276 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (𝐴𝑐0) = 1)
23 mul01 8476 . . . . . . 7 (𝐵 ∈ ℂ → (𝐵 · 0) = 0)
2423adantl 277 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (𝐵 · 0) = 0)
2524oveq2d 5972 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 0)) = (𝐴𝑐0))
26 rpcncxpcl 15444 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (𝐴𝑐𝐵) ∈ ℂ)
2726exp0d 10829 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → ((𝐴𝑐𝐵)↑0) = 1)
2822, 25, 273eqtr4d 2249 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 0)) = ((𝐴𝑐𝐵)↑0))
29 oveq1 5963 . . . . . . 7 ((𝐴𝑐(𝐵 · 𝑘)) = ((𝐴𝑐𝐵)↑𝑘) → ((𝐴𝑐(𝐵 · 𝑘)) · (𝐴𝑐𝐵)) = (((𝐴𝑐𝐵)↑𝑘) · (𝐴𝑐𝐵)))
30 simplr 528 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
31 nn0cn 9320 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
3231adantl 277 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
33 1cnd 8103 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → 1 ∈ ℂ)
3430, 32, 33adddid 8112 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐵 · (𝑘 + 1)) = ((𝐵 · 𝑘) + (𝐵 · 1)))
3530mulridd 8104 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐵 · 1) = 𝐵)
3635oveq2d 5972 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐵 · 𝑘) + (𝐵 · 1)) = ((𝐵 · 𝑘) + 𝐵))
3734, 36eqtrd 2239 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐵 · (𝑘 + 1)) = ((𝐵 · 𝑘) + 𝐵))
3837oveq2d 5972 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = (𝐴𝑐((𝐵 · 𝑘) + 𝐵)))
39 simpll 527 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℝ+)
4030, 32mulcld 8108 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐵 · 𝑘) ∈ ℂ)
41 rpcxpadd 15447 . . . . . . . . . 10 ((𝐴 ∈ ℝ+ ∧ (𝐵 · 𝑘) ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐((𝐵 · 𝑘) + 𝐵)) = ((𝐴𝑐(𝐵 · 𝑘)) · (𝐴𝑐𝐵)))
4239, 40, 30, 41syl3anc 1250 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑐((𝐵 · 𝑘) + 𝐵)) = ((𝐴𝑐(𝐵 · 𝑘)) · (𝐴𝑐𝐵)))
4338, 42eqtrd 2239 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐(𝐵 · 𝑘)) · (𝐴𝑐𝐵)))
44 expp1 10708 . . . . . . . . 9 (((𝐴𝑐𝐵) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑐𝐵)↑(𝑘 + 1)) = (((𝐴𝑐𝐵)↑𝑘) · (𝐴𝑐𝐵)))
4526, 44sylan 283 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑐𝐵)↑(𝑘 + 1)) = (((𝐴𝑐𝐵)↑𝑘) · (𝐴𝑐𝐵)))
4643, 45eqeq12d 2221 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐𝐵)↑(𝑘 + 1)) ↔ ((𝐴𝑐(𝐵 · 𝑘)) · (𝐴𝑐𝐵)) = (((𝐴𝑐𝐵)↑𝑘) · (𝐴𝑐𝐵))))
4729, 46imbitrrid 156 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑐(𝐵 · 𝑘)) = ((𝐴𝑐𝐵)↑𝑘) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐𝐵)↑(𝑘 + 1))))
4847expcom 116 . . . . 5 (𝑘 ∈ ℕ0 → ((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → ((𝐴𝑐(𝐵 · 𝑘)) = ((𝐴𝑐𝐵)↑𝑘) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐𝐵)↑(𝑘 + 1)))))
4948a2d 26 . . . 4 (𝑘 ∈ ℕ0 → (((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 𝑘)) = ((𝐴𝑐𝐵)↑𝑘)) → ((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐𝐵)↑(𝑘 + 1)))))
505, 10, 15, 20, 28, 49nn0ind 9502 . . 3 (𝐶 ∈ ℕ0 → ((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝐶)))
5150com12 30 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (𝐶 ∈ ℕ0 → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝐶)))
52513impia 1203 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℕ0) → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2177  (class class class)co 5956  cc 7938  0cc0 7940  1c1 7941   + caddc 7943   · cmul 7945  0cn0 9310  +crp 9790  cexp 10700  𝑐ccxp 15399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-nul 4177  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-iinf 4643  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-mulrcl 8039  ax-addcom 8040  ax-mulcom 8041  ax-addass 8042  ax-mulass 8043  ax-distr 8044  ax-i2m1 8045  ax-0lt1 8046  ax-1rid 8047  ax-0id 8048  ax-rnegex 8049  ax-precex 8050  ax-cnre 8051  ax-pre-ltirr 8052  ax-pre-ltwlin 8053  ax-pre-lttrn 8054  ax-pre-apti 8055  ax-pre-ltadd 8056  ax-pre-mulgt0 8057  ax-pre-mulext 8058  ax-arch 8059  ax-caucvg 8060  ax-pre-suploc 8061  ax-addf 8062  ax-mulf 8063
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-disj 4027  df-br 4051  df-opab 4113  df-mpt 4114  df-tr 4150  df-id 4347  df-po 4350  df-iso 4351  df-iord 4420  df-on 4422  df-ilim 4423  df-suc 4425  df-iom 4646  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-isom 5288  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-of 6170  df-1st 6238  df-2nd 6239  df-recs 6403  df-irdg 6468  df-frec 6489  df-1o 6514  df-oadd 6518  df-er 6632  df-map 6749  df-pm 6750  df-en 6840  df-dom 6841  df-fin 6842  df-sup 7100  df-inf 7101  df-pnf 8124  df-mnf 8125  df-xr 8126  df-ltxr 8127  df-le 8128  df-sub 8260  df-neg 8261  df-reap 8663  df-ap 8670  df-div 8761  df-inn 9052  df-2 9110  df-3 9111  df-4 9112  df-n0 9311  df-z 9388  df-uz 9664  df-q 9756  df-rp 9791  df-xneg 9909  df-xadd 9910  df-ioo 10029  df-ico 10031  df-icc 10032  df-fz 10146  df-fzo 10280  df-seqfrec 10610  df-exp 10701  df-fac 10888  df-bc 10910  df-ihash 10938  df-shft 11196  df-cj 11223  df-re 11224  df-im 11225  df-rsqrt 11379  df-abs 11380  df-clim 11660  df-sumdc 11735  df-ef 12029  df-e 12030  df-rest 13143  df-topgen 13162  df-psmet 14375  df-xmet 14376  df-met 14377  df-bl 14378  df-mopn 14379  df-top 14540  df-topon 14553  df-bases 14585  df-ntr 14638  df-cn 14730  df-cnp 14731  df-tx 14795  df-cncf 15113  df-limced 15198  df-dvap 15199  df-relog 15400  df-rpcxp 15401
This theorem is referenced by:  rpcxpmul2d  15474
  Copyright terms: Public domain W3C validator