| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 5931 |
. . . . . . 7
⊢ (𝑥 = 0 → (𝐵 · 𝑥) = (𝐵 · 0)) |
| 2 | 1 | oveq2d 5939 |
. . . . . 6
⊢ (𝑥 = 0 → (𝐴↑𝑐(𝐵 · 𝑥)) = (𝐴↑𝑐(𝐵 · 0))) |
| 3 | | oveq2 5931 |
. . . . . 6
⊢ (𝑥 = 0 → ((𝐴↑𝑐𝐵)↑𝑥) = ((𝐴↑𝑐𝐵)↑0)) |
| 4 | 2, 3 | eqeq12d 2211 |
. . . . 5
⊢ (𝑥 = 0 → ((𝐴↑𝑐(𝐵 · 𝑥)) = ((𝐴↑𝑐𝐵)↑𝑥) ↔ (𝐴↑𝑐(𝐵 · 0)) = ((𝐴↑𝑐𝐵)↑0))) |
| 5 | 4 | imbi2d 230 |
. . . 4
⊢ (𝑥 = 0 → (((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐(𝐵 · 𝑥)) = ((𝐴↑𝑐𝐵)↑𝑥)) ↔ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐(𝐵 · 0)) = ((𝐴↑𝑐𝐵)↑0)))) |
| 6 | | oveq2 5931 |
. . . . . . 7
⊢ (𝑥 = 𝑘 → (𝐵 · 𝑥) = (𝐵 · 𝑘)) |
| 7 | 6 | oveq2d 5939 |
. . . . . 6
⊢ (𝑥 = 𝑘 → (𝐴↑𝑐(𝐵 · 𝑥)) = (𝐴↑𝑐(𝐵 · 𝑘))) |
| 8 | | oveq2 5931 |
. . . . . 6
⊢ (𝑥 = 𝑘 → ((𝐴↑𝑐𝐵)↑𝑥) = ((𝐴↑𝑐𝐵)↑𝑘)) |
| 9 | 7, 8 | eqeq12d 2211 |
. . . . 5
⊢ (𝑥 = 𝑘 → ((𝐴↑𝑐(𝐵 · 𝑥)) = ((𝐴↑𝑐𝐵)↑𝑥) ↔ (𝐴↑𝑐(𝐵 · 𝑘)) = ((𝐴↑𝑐𝐵)↑𝑘))) |
| 10 | 9 | imbi2d 230 |
. . . 4
⊢ (𝑥 = 𝑘 → (((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐(𝐵 · 𝑥)) = ((𝐴↑𝑐𝐵)↑𝑥)) ↔ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐(𝐵 · 𝑘)) = ((𝐴↑𝑐𝐵)↑𝑘)))) |
| 11 | | oveq2 5931 |
. . . . . . 7
⊢ (𝑥 = (𝑘 + 1) → (𝐵 · 𝑥) = (𝐵 · (𝑘 + 1))) |
| 12 | 11 | oveq2d 5939 |
. . . . . 6
⊢ (𝑥 = (𝑘 + 1) → (𝐴↑𝑐(𝐵 · 𝑥)) = (𝐴↑𝑐(𝐵 · (𝑘 + 1)))) |
| 13 | | oveq2 5931 |
. . . . . 6
⊢ (𝑥 = (𝑘 + 1) → ((𝐴↑𝑐𝐵)↑𝑥) = ((𝐴↑𝑐𝐵)↑(𝑘 + 1))) |
| 14 | 12, 13 | eqeq12d 2211 |
. . . . 5
⊢ (𝑥 = (𝑘 + 1) → ((𝐴↑𝑐(𝐵 · 𝑥)) = ((𝐴↑𝑐𝐵)↑𝑥) ↔ (𝐴↑𝑐(𝐵 · (𝑘 + 1))) = ((𝐴↑𝑐𝐵)↑(𝑘 + 1)))) |
| 15 | 14 | imbi2d 230 |
. . . 4
⊢ (𝑥 = (𝑘 + 1) → (((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐(𝐵 · 𝑥)) = ((𝐴↑𝑐𝐵)↑𝑥)) ↔ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐(𝐵 · (𝑘 + 1))) = ((𝐴↑𝑐𝐵)↑(𝑘 + 1))))) |
| 16 | | oveq2 5931 |
. . . . . . 7
⊢ (𝑥 = 𝐶 → (𝐵 · 𝑥) = (𝐵 · 𝐶)) |
| 17 | 16 | oveq2d 5939 |
. . . . . 6
⊢ (𝑥 = 𝐶 → (𝐴↑𝑐(𝐵 · 𝑥)) = (𝐴↑𝑐(𝐵 · 𝐶))) |
| 18 | | oveq2 5931 |
. . . . . 6
⊢ (𝑥 = 𝐶 → ((𝐴↑𝑐𝐵)↑𝑥) = ((𝐴↑𝑐𝐵)↑𝐶)) |
| 19 | 17, 18 | eqeq12d 2211 |
. . . . 5
⊢ (𝑥 = 𝐶 → ((𝐴↑𝑐(𝐵 · 𝑥)) = ((𝐴↑𝑐𝐵)↑𝑥) ↔ (𝐴↑𝑐(𝐵 · 𝐶)) = ((𝐴↑𝑐𝐵)↑𝐶))) |
| 20 | 19 | imbi2d 230 |
. . . 4
⊢ (𝑥 = 𝐶 → (((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐(𝐵 · 𝑥)) = ((𝐴↑𝑐𝐵)↑𝑥)) ↔ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐(𝐵 · 𝐶)) = ((𝐴↑𝑐𝐵)↑𝐶)))) |
| 21 | | rpcxp0 15144 |
. . . . . 6
⊢ (𝐴 ∈ ℝ+
→ (𝐴↑𝑐0) =
1) |
| 22 | 21 | adantr 276 |
. . . . 5
⊢ ((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℂ)
→ (𝐴↑𝑐0) =
1) |
| 23 | | mul01 8417 |
. . . . . . 7
⊢ (𝐵 ∈ ℂ → (𝐵 · 0) =
0) |
| 24 | 23 | adantl 277 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℂ)
→ (𝐵 · 0) =
0) |
| 25 | 24 | oveq2d 5939 |
. . . . 5
⊢ ((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℂ)
→ (𝐴↑𝑐(𝐵 · 0)) = (𝐴↑𝑐0)) |
| 26 | | rpcncxpcl 15148 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℂ)
→ (𝐴↑𝑐𝐵) ∈ ℂ) |
| 27 | 26 | exp0d 10761 |
. . . . 5
⊢ ((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℂ)
→ ((𝐴↑𝑐𝐵)↑0) = 1) |
| 28 | 22, 25, 27 | 3eqtr4d 2239 |
. . . 4
⊢ ((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℂ)
→ (𝐴↑𝑐(𝐵 · 0)) = ((𝐴↑𝑐𝐵)↑0)) |
| 29 | | oveq1 5930 |
. . . . . . 7
⊢ ((𝐴↑𝑐(𝐵 · 𝑘)) = ((𝐴↑𝑐𝐵)↑𝑘) → ((𝐴↑𝑐(𝐵 · 𝑘)) · (𝐴↑𝑐𝐵)) = (((𝐴↑𝑐𝐵)↑𝑘) · (𝐴↑𝑐𝐵))) |
| 30 | | simplr 528 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℂ)
∧ 𝑘 ∈
ℕ0) → 𝐵 ∈ ℂ) |
| 31 | | nn0cn 9261 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℂ) |
| 32 | 31 | adantl 277 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℂ)
∧ 𝑘 ∈
ℕ0) → 𝑘 ∈ ℂ) |
| 33 | | 1cnd 8044 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℂ)
∧ 𝑘 ∈
ℕ0) → 1 ∈ ℂ) |
| 34 | 30, 32, 33 | adddid 8053 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℂ)
∧ 𝑘 ∈
ℕ0) → (𝐵 · (𝑘 + 1)) = ((𝐵 · 𝑘) + (𝐵 · 1))) |
| 35 | 30 | mulridd 8045 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℂ)
∧ 𝑘 ∈
ℕ0) → (𝐵 · 1) = 𝐵) |
| 36 | 35 | oveq2d 5939 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℂ)
∧ 𝑘 ∈
ℕ0) → ((𝐵 · 𝑘) + (𝐵 · 1)) = ((𝐵 · 𝑘) + 𝐵)) |
| 37 | 34, 36 | eqtrd 2229 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℂ)
∧ 𝑘 ∈
ℕ0) → (𝐵 · (𝑘 + 1)) = ((𝐵 · 𝑘) + 𝐵)) |
| 38 | 37 | oveq2d 5939 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℂ)
∧ 𝑘 ∈
ℕ0) → (𝐴↑𝑐(𝐵 · (𝑘 + 1))) = (𝐴↑𝑐((𝐵 · 𝑘) + 𝐵))) |
| 39 | | simpll 527 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℂ)
∧ 𝑘 ∈
ℕ0) → 𝐴 ∈
ℝ+) |
| 40 | 30, 32 | mulcld 8049 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℂ)
∧ 𝑘 ∈
ℕ0) → (𝐵 · 𝑘) ∈ ℂ) |
| 41 | | rpcxpadd 15151 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ+
∧ (𝐵 · 𝑘) ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐((𝐵 · 𝑘) + 𝐵)) = ((𝐴↑𝑐(𝐵 · 𝑘)) · (𝐴↑𝑐𝐵))) |
| 42 | 39, 40, 30, 41 | syl3anc 1249 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℂ)
∧ 𝑘 ∈
ℕ0) → (𝐴↑𝑐((𝐵 · 𝑘) + 𝐵)) = ((𝐴↑𝑐(𝐵 · 𝑘)) · (𝐴↑𝑐𝐵))) |
| 43 | 38, 42 | eqtrd 2229 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℂ)
∧ 𝑘 ∈
ℕ0) → (𝐴↑𝑐(𝐵 · (𝑘 + 1))) = ((𝐴↑𝑐(𝐵 · 𝑘)) · (𝐴↑𝑐𝐵))) |
| 44 | | expp1 10640 |
. . . . . . . . 9
⊢ (((𝐴↑𝑐𝐵) ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ ((𝐴↑𝑐𝐵)↑(𝑘 + 1)) = (((𝐴↑𝑐𝐵)↑𝑘) · (𝐴↑𝑐𝐵))) |
| 45 | 26, 44 | sylan 283 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℂ)
∧ 𝑘 ∈
ℕ0) → ((𝐴↑𝑐𝐵)↑(𝑘 + 1)) = (((𝐴↑𝑐𝐵)↑𝑘) · (𝐴↑𝑐𝐵))) |
| 46 | 43, 45 | eqeq12d 2211 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℂ)
∧ 𝑘 ∈
ℕ0) → ((𝐴↑𝑐(𝐵 · (𝑘 + 1))) = ((𝐴↑𝑐𝐵)↑(𝑘 + 1)) ↔ ((𝐴↑𝑐(𝐵 · 𝑘)) · (𝐴↑𝑐𝐵)) = (((𝐴↑𝑐𝐵)↑𝑘) · (𝐴↑𝑐𝐵)))) |
| 47 | 29, 46 | imbitrrid 156 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℂ)
∧ 𝑘 ∈
ℕ0) → ((𝐴↑𝑐(𝐵 · 𝑘)) = ((𝐴↑𝑐𝐵)↑𝑘) → (𝐴↑𝑐(𝐵 · (𝑘 + 1))) = ((𝐴↑𝑐𝐵)↑(𝑘 + 1)))) |
| 48 | 47 | expcom 116 |
. . . . 5
⊢ (𝑘 ∈ ℕ0
→ ((𝐴 ∈
ℝ+ ∧ 𝐵
∈ ℂ) → ((𝐴↑𝑐(𝐵 · 𝑘)) = ((𝐴↑𝑐𝐵)↑𝑘) → (𝐴↑𝑐(𝐵 · (𝑘 + 1))) = ((𝐴↑𝑐𝐵)↑(𝑘 + 1))))) |
| 49 | 48 | a2d 26 |
. . . 4
⊢ (𝑘 ∈ ℕ0
→ (((𝐴 ∈
ℝ+ ∧ 𝐵
∈ ℂ) → (𝐴↑𝑐(𝐵 · 𝑘)) = ((𝐴↑𝑐𝐵)↑𝑘)) → ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐(𝐵 · (𝑘 + 1))) = ((𝐴↑𝑐𝐵)↑(𝑘 + 1))))) |
| 50 | 5, 10, 15, 20, 28, 49 | nn0ind 9442 |
. . 3
⊢ (𝐶 ∈ ℕ0
→ ((𝐴 ∈
ℝ+ ∧ 𝐵
∈ ℂ) → (𝐴↑𝑐(𝐵 · 𝐶)) = ((𝐴↑𝑐𝐵)↑𝐶))) |
| 51 | 50 | com12 30 |
. 2
⊢ ((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℂ)
→ (𝐶 ∈
ℕ0 → (𝐴↑𝑐(𝐵 · 𝐶)) = ((𝐴↑𝑐𝐵)↑𝐶))) |
| 52 | 51 | 3impia 1202 |
1
⊢ ((𝐴 ∈ ℝ+
∧ 𝐵 ∈ ℂ
∧ 𝐶 ∈
ℕ0) → (𝐴↑𝑐(𝐵 · 𝐶)) = ((𝐴↑𝑐𝐵)↑𝐶)) |