| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfznn | GIF version | ||
| Description: A member of a finite set of sequential integers starting at 1 is a positive integer. (Contributed by NM, 24-Aug-2005.) |
| Ref | Expression |
|---|---|
| elfznn | ⊢ (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzelz 10119 | . 2 ⊢ (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℤ) | |
| 2 | elfzle1 10121 | . 2 ⊢ (𝐾 ∈ (1...𝑁) → 1 ≤ 𝐾) | |
| 3 | elnnz1 9368 | . 2 ⊢ (𝐾 ∈ ℕ ↔ (𝐾 ∈ ℤ ∧ 1 ≤ 𝐾)) | |
| 4 | 1, 2, 3 | sylanbrc 417 | 1 ⊢ (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 class class class wbr 4034 (class class class)co 5925 1c1 7899 ≤ cle 8081 ℕcn 9009 ℤcz 9345 ...cfz 10102 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-addcom 7998 ax-addass 8000 ax-distr 8002 ax-i2m1 8003 ax-0lt1 8004 ax-0id 8006 ax-rnegex 8007 ax-cnre 8009 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-ltadd 8014 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-sub 8218 df-neg 8219 df-inn 9010 df-z 9346 df-uz 9621 df-fz 10103 |
| This theorem is referenced by: elfz1end 10149 fz1ssnn 10150 fzossnn 10284 nninfdcex 10346 bcm1k 10871 bcpasc 10877 seq3coll 10953 summodclem3 11564 summodclem2a 11565 fsum3 11571 isumz 11573 fsumcl2lem 11582 binomlem 11667 arisum2 11683 trireciplem 11684 geo2sum 11698 cvgratnnlemsumlt 11712 prodmodclem3 11759 prodmodclem2a 11760 fprodseq 11767 prod1dc 11770 fzm1ndvds 12040 nnmindc 12228 nnminle 12229 phicl 12410 eulerthlemrprm 12424 prmdivdiv 12432 dvdsfi 12434 odzcllem 12438 odzdvds 12441 modprm0 12450 pcfac 12546 pcbc 12547 1arith 12563 4sqlem13m 12599 4sqlem14 12600 4sqlem17 12603 4sqlem18 12604 mulgnngsum 13335 mulgnn0z 13357 mulgnndir 13359 dvply1 15109 wilthlem1 15324 lgsval2lem 15359 lgseisenlem1 15419 lgseisenlem2 15420 lgseisenlem3 15421 lgseisenlem4 15422 lgseisen 15423 lgsquadlemsfi 15424 lgsquadlem1 15426 lgsquadlem2 15427 lgsquadlem3 15428 2lgslem1a1 15435 cvgcmp2nlemabs 15789 trilpolemlt1 15798 nconstwlpolemgt0 15821 |
| Copyright terms: Public domain | W3C validator |