| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfznn | GIF version | ||
| Description: A member of a finite set of sequential integers starting at 1 is a positive integer. (Contributed by NM, 24-Aug-2005.) |
| Ref | Expression |
|---|---|
| elfznn | ⊢ (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzelz 10117 | . 2 ⊢ (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℤ) | |
| 2 | elfzle1 10119 | . 2 ⊢ (𝐾 ∈ (1...𝑁) → 1 ≤ 𝐾) | |
| 3 | elnnz1 9366 | . 2 ⊢ (𝐾 ∈ ℕ ↔ (𝐾 ∈ ℤ ∧ 1 ≤ 𝐾)) | |
| 4 | 1, 2, 3 | sylanbrc 417 | 1 ⊢ (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 class class class wbr 4034 (class class class)co 5925 1c1 7897 ≤ cle 8079 ℕcn 9007 ℤcz 9343 ...cfz 10100 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-z 9344 df-uz 9619 df-fz 10101 |
| This theorem is referenced by: elfz1end 10147 fz1ssnn 10148 fzossnn 10282 nninfdcex 10344 bcm1k 10869 bcpasc 10875 seq3coll 10951 summodclem3 11562 summodclem2a 11563 fsum3 11569 isumz 11571 fsumcl2lem 11580 binomlem 11665 arisum2 11681 trireciplem 11682 geo2sum 11696 cvgratnnlemsumlt 11710 prodmodclem3 11757 prodmodclem2a 11758 fprodseq 11765 prod1dc 11768 fzm1ndvds 12038 nnmindc 12226 nnminle 12227 phicl 12408 eulerthlemrprm 12422 prmdivdiv 12430 dvdsfi 12432 odzcllem 12436 odzdvds 12439 modprm0 12448 pcfac 12544 pcbc 12545 1arith 12561 4sqlem13m 12597 4sqlem14 12598 4sqlem17 12601 4sqlem18 12602 mulgnngsum 13333 mulgnn0z 13355 mulgnndir 13357 dvply1 15085 wilthlem1 15300 lgsval2lem 15335 lgseisenlem1 15395 lgseisenlem2 15396 lgseisenlem3 15397 lgseisenlem4 15398 lgseisen 15399 lgsquadlemsfi 15400 lgsquadlem1 15402 lgsquadlem2 15403 lgsquadlem3 15404 2lgslem1a1 15411 cvgcmp2nlemabs 15763 trilpolemlt1 15772 nconstwlpolemgt0 15795 |
| Copyright terms: Public domain | W3C validator |