| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfznn | GIF version | ||
| Description: A member of a finite set of sequential integers starting at 1 is a positive integer. (Contributed by NM, 24-Aug-2005.) |
| Ref | Expression |
|---|---|
| elfznn | ⊢ (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzelz 10217 | . 2 ⊢ (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℤ) | |
| 2 | elfzle1 10219 | . 2 ⊢ (𝐾 ∈ (1...𝑁) → 1 ≤ 𝐾) | |
| 3 | elnnz1 9465 | . 2 ⊢ (𝐾 ∈ ℕ ↔ (𝐾 ∈ ℤ ∧ 1 ≤ 𝐾)) | |
| 4 | 1, 2, 3 | sylanbrc 417 | 1 ⊢ (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 class class class wbr 4082 (class class class)co 6000 1c1 7996 ≤ cle 8178 ℕcn 9106 ℤcz 9442 ...cfz 10200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-z 9443 df-uz 9719 df-fz 10201 |
| This theorem is referenced by: elfz1end 10247 fz1ssnn 10248 fzossnn 10385 nninfdcex 10452 bcm1k 10977 bcpasc 10983 seq3coll 11059 pfxfv0 11219 pfxfvlsw 11222 summodclem3 11886 summodclem2a 11887 fsum3 11893 isumz 11895 fsumcl2lem 11904 binomlem 11989 arisum2 12005 trireciplem 12006 geo2sum 12020 cvgratnnlemsumlt 12034 prodmodclem3 12081 prodmodclem2a 12082 fprodseq 12089 prod1dc 12092 fzm1ndvds 12362 nnmindc 12550 nnminle 12551 phicl 12732 eulerthlemrprm 12746 prmdivdiv 12754 dvdsfi 12756 odzcllem 12760 odzdvds 12763 modprm0 12772 pcfac 12868 pcbc 12869 1arith 12885 4sqlem13m 12921 4sqlem14 12922 4sqlem17 12925 4sqlem18 12926 mulgnngsum 13659 mulgnn0z 13681 mulgnndir 13683 dvply1 15433 wilthlem1 15648 lgsval2lem 15683 lgseisenlem1 15743 lgseisenlem2 15744 lgseisenlem3 15745 lgseisenlem4 15746 lgseisen 15747 lgsquadlemsfi 15748 lgsquadlem1 15750 lgsquadlem2 15751 lgsquadlem3 15752 2lgslem1a1 15759 cvgcmp2nlemabs 16359 trilpolemlt1 16368 nconstwlpolemgt0 16391 |
| Copyright terms: Public domain | W3C validator |