![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elfznn | GIF version |
Description: A member of a finite set of sequential integers starting at 1 is a positive integer. (Contributed by NM, 24-Aug-2005.) |
Ref | Expression |
---|---|
elfznn | ⊢ (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzelz 10091 | . 2 ⊢ (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℤ) | |
2 | elfzle1 10093 | . 2 ⊢ (𝐾 ∈ (1...𝑁) → 1 ≤ 𝐾) | |
3 | elnnz1 9340 | . 2 ⊢ (𝐾 ∈ ℕ ↔ (𝐾 ∈ ℤ ∧ 1 ≤ 𝐾)) | |
4 | 1, 2, 3 | sylanbrc 417 | 1 ⊢ (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℕ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 class class class wbr 4029 (class class class)co 5918 1c1 7873 ≤ cle 8055 ℕcn 8982 ℤcz 9317 ...cfz 10074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-z 9318 df-uz 9593 df-fz 10075 |
This theorem is referenced by: elfz1end 10121 fz1ssnn 10122 fzossnn 10256 bcm1k 10831 bcpasc 10837 seq3coll 10913 summodclem3 11523 summodclem2a 11524 fsum3 11530 isumz 11532 fsumcl2lem 11541 binomlem 11626 arisum2 11642 trireciplem 11643 geo2sum 11657 cvgratnnlemsumlt 11671 prodmodclem3 11718 prodmodclem2a 11719 fprodseq 11726 prod1dc 11729 fzm1ndvds 11998 nninfdcex 12090 nnmindc 12171 nnminle 12172 phicl 12353 eulerthlemrprm 12367 prmdivdiv 12375 phisum 12378 odzcllem 12380 odzdvds 12383 modprm0 12392 pcfac 12488 pcbc 12489 1arith 12505 4sqlem13m 12541 4sqlem14 12542 4sqlem17 12545 4sqlem18 12546 mulgnngsum 13197 mulgnn0z 13219 mulgnndir 13221 wilthlem1 15112 lgsval2lem 15126 lgseisenlem1 15186 lgseisenlem2 15187 lgseisenlem3 15188 lgseisenlem4 15189 lgseisen 15190 lgsquadlem1 15191 cvgcmp2nlemabs 15522 trilpolemlt1 15531 nconstwlpolemgt0 15554 |
Copyright terms: Public domain | W3C validator |