| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfznn | GIF version | ||
| Description: A member of a finite set of sequential integers starting at 1 is a positive integer. (Contributed by NM, 24-Aug-2005.) |
| Ref | Expression |
|---|---|
| elfznn | ⊢ (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzelz 10146 | . 2 ⊢ (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℤ) | |
| 2 | elfzle1 10148 | . 2 ⊢ (𝐾 ∈ (1...𝑁) → 1 ≤ 𝐾) | |
| 3 | elnnz1 9394 | . 2 ⊢ (𝐾 ∈ ℕ ↔ (𝐾 ∈ ℤ ∧ 1 ≤ 𝐾)) | |
| 4 | 1, 2, 3 | sylanbrc 417 | 1 ⊢ (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 class class class wbr 4043 (class class class)co 5943 1c1 7925 ≤ cle 8107 ℕcn 9035 ℤcz 9371 ...cfz 10129 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-inn 9036 df-z 9372 df-uz 9648 df-fz 10130 |
| This theorem is referenced by: elfz1end 10176 fz1ssnn 10177 fzossnn 10311 nninfdcex 10378 bcm1k 10903 bcpasc 10909 seq3coll 10985 summodclem3 11633 summodclem2a 11634 fsum3 11640 isumz 11642 fsumcl2lem 11651 binomlem 11736 arisum2 11752 trireciplem 11753 geo2sum 11767 cvgratnnlemsumlt 11781 prodmodclem3 11828 prodmodclem2a 11829 fprodseq 11836 prod1dc 11839 fzm1ndvds 12109 nnmindc 12297 nnminle 12298 phicl 12479 eulerthlemrprm 12493 prmdivdiv 12501 dvdsfi 12503 odzcllem 12507 odzdvds 12510 modprm0 12519 pcfac 12615 pcbc 12616 1arith 12632 4sqlem13m 12668 4sqlem14 12669 4sqlem17 12672 4sqlem18 12673 mulgnngsum 13405 mulgnn0z 13427 mulgnndir 13429 dvply1 15179 wilthlem1 15394 lgsval2lem 15429 lgseisenlem1 15489 lgseisenlem2 15490 lgseisenlem3 15491 lgseisenlem4 15492 lgseisen 15493 lgsquadlemsfi 15494 lgsquadlem1 15496 lgsquadlem2 15497 lgsquadlem3 15498 2lgslem1a1 15505 cvgcmp2nlemabs 15904 trilpolemlt1 15913 nconstwlpolemgt0 15936 |
| Copyright terms: Public domain | W3C validator |