| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfznn | GIF version | ||
| Description: A member of a finite set of sequential integers starting at 1 is a positive integer. (Contributed by NM, 24-Aug-2005.) |
| Ref | Expression |
|---|---|
| elfznn | ⊢ (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzelz 10167 | . 2 ⊢ (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℤ) | |
| 2 | elfzle1 10169 | . 2 ⊢ (𝐾 ∈ (1...𝑁) → 1 ≤ 𝐾) | |
| 3 | elnnz1 9415 | . 2 ⊢ (𝐾 ∈ ℕ ↔ (𝐾 ∈ ℤ ∧ 1 ≤ 𝐾)) | |
| 4 | 1, 2, 3 | sylanbrc 417 | 1 ⊢ (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 class class class wbr 4051 (class class class)co 5957 1c1 7946 ≤ cle 8128 ℕcn 9056 ℤcz 9392 ...cfz 10150 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-inn 9057 df-z 9393 df-uz 9669 df-fz 10151 |
| This theorem is referenced by: elfz1end 10197 fz1ssnn 10198 fzossnn 10335 nninfdcex 10402 bcm1k 10927 bcpasc 10933 seq3coll 11009 pfxfv0 11168 pfxfvlsw 11171 summodclem3 11766 summodclem2a 11767 fsum3 11773 isumz 11775 fsumcl2lem 11784 binomlem 11869 arisum2 11885 trireciplem 11886 geo2sum 11900 cvgratnnlemsumlt 11914 prodmodclem3 11961 prodmodclem2a 11962 fprodseq 11969 prod1dc 11972 fzm1ndvds 12242 nnmindc 12430 nnminle 12431 phicl 12612 eulerthlemrprm 12626 prmdivdiv 12634 dvdsfi 12636 odzcllem 12640 odzdvds 12643 modprm0 12652 pcfac 12748 pcbc 12749 1arith 12765 4sqlem13m 12801 4sqlem14 12802 4sqlem17 12805 4sqlem18 12806 mulgnngsum 13538 mulgnn0z 13560 mulgnndir 13562 dvply1 15312 wilthlem1 15527 lgsval2lem 15562 lgseisenlem1 15622 lgseisenlem2 15623 lgseisenlem3 15624 lgseisenlem4 15625 lgseisen 15626 lgsquadlemsfi 15627 lgsquadlem1 15629 lgsquadlem2 15630 lgsquadlem3 15631 2lgslem1a1 15638 cvgcmp2nlemabs 16112 trilpolemlt1 16121 nconstwlpolemgt0 16144 |
| Copyright terms: Public domain | W3C validator |