![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imasrngf1 | GIF version |
Description: The image of a non-unital ring under an injection is a non-unital ring. (Contributed by AV, 22-Feb-2025.) |
Ref | Expression |
---|---|
imasrngf1.u | ⊢ 𝑈 = (𝐹 “s 𝑅) |
imasrngf1.v | ⊢ 𝑉 = (Base‘𝑅) |
Ref | Expression |
---|---|
imasrngf1 | ⊢ ((𝐹:𝑉–1-1→𝐵 ∧ 𝑅 ∈ Rng) → 𝑈 ∈ Rng) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imasrngf1.u | . . 3 ⊢ 𝑈 = (𝐹 “s 𝑅) | |
2 | 1 | a1i 9 | . 2 ⊢ ((𝐹:𝑉–1-1→𝐵 ∧ 𝑅 ∈ Rng) → 𝑈 = (𝐹 “s 𝑅)) |
3 | imasrngf1.v | . . 3 ⊢ 𝑉 = (Base‘𝑅) | |
4 | 3 | a1i 9 | . 2 ⊢ ((𝐹:𝑉–1-1→𝐵 ∧ 𝑅 ∈ Rng) → 𝑉 = (Base‘𝑅)) |
5 | eqid 2189 | . 2 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
6 | eqid 2189 | . 2 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
7 | f1f1orn 5491 | . . . 4 ⊢ (𝐹:𝑉–1-1→𝐵 → 𝐹:𝑉–1-1-onto→ran 𝐹) | |
8 | 7 | adantr 276 | . . 3 ⊢ ((𝐹:𝑉–1-1→𝐵 ∧ 𝑅 ∈ Rng) → 𝐹:𝑉–1-1-onto→ran 𝐹) |
9 | f1ofo 5487 | . . 3 ⊢ (𝐹:𝑉–1-1-onto→ran 𝐹 → 𝐹:𝑉–onto→ran 𝐹) | |
10 | 8, 9 | syl 14 | . 2 ⊢ ((𝐹:𝑉–1-1→𝐵 ∧ 𝑅 ∈ Rng) → 𝐹:𝑉–onto→ran 𝐹) |
11 | 8 | f1ocpbl 12791 | . 2 ⊢ (((𝐹:𝑉–1-1→𝐵 ∧ 𝑅 ∈ Rng) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎(+g‘𝑅)𝑏)) = (𝐹‘(𝑝(+g‘𝑅)𝑞)))) |
12 | 8 | f1ocpbl 12791 | . 2 ⊢ (((𝐹:𝑉–1-1→𝐵 ∧ 𝑅 ∈ Rng) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎(.r‘𝑅)𝑏)) = (𝐹‘(𝑝(.r‘𝑅)𝑞)))) |
13 | simpr 110 | . 2 ⊢ ((𝐹:𝑉–1-1→𝐵 ∧ 𝑅 ∈ Rng) → 𝑅 ∈ Rng) | |
14 | 2, 4, 5, 6, 10, 11, 12, 13 | imasrng 13327 | 1 ⊢ ((𝐹:𝑉–1-1→𝐵 ∧ 𝑅 ∈ Rng) → 𝑈 ∈ Rng) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2160 ran crn 4645 –1-1→wf1 5232 –onto→wfo 5233 –1-1-onto→wf1o 5234 ‘cfv 5235 (class class class)co 5897 Basecbs 12515 +gcplusg 12592 .rcmulr 12593 “s cimas 12779 Rngcrng 13303 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7933 ax-resscn 7934 ax-1cn 7935 ax-1re 7936 ax-icn 7937 ax-addcl 7938 ax-addrcl 7939 ax-mulcl 7940 ax-addcom 7942 ax-addass 7944 ax-i2m1 7947 ax-0lt1 7948 ax-0id 7950 ax-rnegex 7951 ax-pre-ltirr 7954 ax-pre-lttrn 7956 ax-pre-ltadd 7958 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-tp 3615 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-riota 5852 df-ov 5900 df-oprab 5901 df-mpo 5902 df-pnf 8025 df-mnf 8026 df-ltxr 8028 df-inn 8951 df-2 9009 df-3 9010 df-ndx 12518 df-slot 12519 df-base 12521 df-sets 12522 df-plusg 12605 df-mulr 12606 df-0g 12766 df-iimas 12782 df-mgm 12835 df-sgrp 12880 df-mnd 12893 df-grp 12963 df-minusg 12964 df-cmn 13242 df-abl 13243 df-mgp 13292 df-rng 13304 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |