| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imasrngf1 | GIF version | ||
| Description: The image of a non-unital ring under an injection is a non-unital ring. (Contributed by AV, 22-Feb-2025.) |
| Ref | Expression |
|---|---|
| imasrngf1.u | ⊢ 𝑈 = (𝐹 “s 𝑅) |
| imasrngf1.v | ⊢ 𝑉 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| imasrngf1 | ⊢ ((𝐹:𝑉–1-1→𝐵 ∧ 𝑅 ∈ Rng) → 𝑈 ∈ Rng) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasrngf1.u | . . 3 ⊢ 𝑈 = (𝐹 “s 𝑅) | |
| 2 | 1 | a1i 9 | . 2 ⊢ ((𝐹:𝑉–1-1→𝐵 ∧ 𝑅 ∈ Rng) → 𝑈 = (𝐹 “s 𝑅)) |
| 3 | imasrngf1.v | . . 3 ⊢ 𝑉 = (Base‘𝑅) | |
| 4 | 3 | a1i 9 | . 2 ⊢ ((𝐹:𝑉–1-1→𝐵 ∧ 𝑅 ∈ Rng) → 𝑉 = (Base‘𝑅)) |
| 5 | eqid 2229 | . 2 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 6 | eqid 2229 | . 2 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 7 | f1f1orn 5582 | . . . 4 ⊢ (𝐹:𝑉–1-1→𝐵 → 𝐹:𝑉–1-1-onto→ran 𝐹) | |
| 8 | 7 | adantr 276 | . . 3 ⊢ ((𝐹:𝑉–1-1→𝐵 ∧ 𝑅 ∈ Rng) → 𝐹:𝑉–1-1-onto→ran 𝐹) |
| 9 | f1ofo 5578 | . . 3 ⊢ (𝐹:𝑉–1-1-onto→ran 𝐹 → 𝐹:𝑉–onto→ran 𝐹) | |
| 10 | 8, 9 | syl 14 | . 2 ⊢ ((𝐹:𝑉–1-1→𝐵 ∧ 𝑅 ∈ Rng) → 𝐹:𝑉–onto→ran 𝐹) |
| 11 | 8 | f1ocpbl 13339 | . 2 ⊢ (((𝐹:𝑉–1-1→𝐵 ∧ 𝑅 ∈ Rng) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎(+g‘𝑅)𝑏)) = (𝐹‘(𝑝(+g‘𝑅)𝑞)))) |
| 12 | 8 | f1ocpbl 13339 | . 2 ⊢ (((𝐹:𝑉–1-1→𝐵 ∧ 𝑅 ∈ Rng) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎(.r‘𝑅)𝑏)) = (𝐹‘(𝑝(.r‘𝑅)𝑞)))) |
| 13 | simpr 110 | . 2 ⊢ ((𝐹:𝑉–1-1→𝐵 ∧ 𝑅 ∈ Rng) → 𝑅 ∈ Rng) | |
| 14 | 2, 4, 5, 6, 10, 11, 12, 13 | imasrng 13914 | 1 ⊢ ((𝐹:𝑉–1-1→𝐵 ∧ 𝑅 ∈ Rng) → 𝑈 ∈ Rng) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ran crn 4719 –1-1→wf1 5314 –onto→wfo 5315 –1-1-onto→wf1o 5316 ‘cfv 5317 (class class class)co 6000 Basecbs 13027 +gcplusg 13105 .rcmulr 13106 “s cimas 13327 Rngcrng 13890 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-pre-ltirr 8107 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-ltxr 8182 df-inn 9107 df-2 9165 df-3 9166 df-ndx 13030 df-slot 13031 df-base 13033 df-sets 13034 df-plusg 13118 df-mulr 13119 df-0g 13286 df-iimas 13330 df-mgm 13384 df-sgrp 13430 df-mnd 13445 df-grp 13531 df-minusg 13532 df-cmn 13818 df-abl 13819 df-mgp 13879 df-rng 13891 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |