![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > m1modnnsub1 | GIF version |
Description: Minus one modulo a positive integer is equal to the integer minus one. (Contributed by AV, 14-Jul-2021.) |
Ref | Expression |
---|---|
m1modnnsub1 | ⊢ (𝑀 ∈ ℕ → (-1 mod 𝑀) = (𝑀 − 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1z 9282 | . . . 4 ⊢ 1 ∈ ℤ | |
2 | zq 9629 | . . . 4 ⊢ (1 ∈ ℤ → 1 ∈ ℚ) | |
3 | 1, 2 | mp1i 10 | . . 3 ⊢ (𝑀 ∈ ℕ → 1 ∈ ℚ) |
4 | nnq 9636 | . . 3 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℚ) | |
5 | nngt0 8947 | . . 3 ⊢ (𝑀 ∈ ℕ → 0 < 𝑀) | |
6 | qnegmod 10372 | . . 3 ⊢ ((1 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → (-1 mod 𝑀) = ((𝑀 − 1) mod 𝑀)) | |
7 | 3, 4, 5, 6 | syl3anc 1238 | . 2 ⊢ (𝑀 ∈ ℕ → (-1 mod 𝑀) = ((𝑀 − 1) mod 𝑀)) |
8 | qsubcl 9641 | . . . 4 ⊢ ((𝑀 ∈ ℚ ∧ 1 ∈ ℚ) → (𝑀 − 1) ∈ ℚ) | |
9 | 4, 3, 8 | syl2anc 411 | . . 3 ⊢ (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℚ) |
10 | nnm1ge0 9342 | . . 3 ⊢ (𝑀 ∈ ℕ → 0 ≤ (𝑀 − 1)) | |
11 | nnre 8929 | . . . 4 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℝ) | |
12 | 11 | ltm1d 8892 | . . 3 ⊢ (𝑀 ∈ ℕ → (𝑀 − 1) < 𝑀) |
13 | modqid 10352 | . . 3 ⊢ ((((𝑀 − 1) ∈ ℚ ∧ 𝑀 ∈ ℚ) ∧ (0 ≤ (𝑀 − 1) ∧ (𝑀 − 1) < 𝑀)) → ((𝑀 − 1) mod 𝑀) = (𝑀 − 1)) | |
14 | 9, 4, 10, 12, 13 | syl22anc 1239 | . 2 ⊢ (𝑀 ∈ ℕ → ((𝑀 − 1) mod 𝑀) = (𝑀 − 1)) |
15 | 7, 14 | eqtrd 2210 | 1 ⊢ (𝑀 ∈ ℕ → (-1 mod 𝑀) = (𝑀 − 1)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 class class class wbr 4005 (class class class)co 5878 0cc0 7814 1c1 7815 < clt 7995 ≤ cle 7996 − cmin 8131 -cneg 8132 ℕcn 8922 ℤcz 9256 ℚcq 9622 mod cmo 10325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7905 ax-resscn 7906 ax-1cn 7907 ax-1re 7908 ax-icn 7909 ax-addcl 7910 ax-addrcl 7911 ax-mulcl 7912 ax-mulrcl 7913 ax-addcom 7914 ax-mulcom 7915 ax-addass 7916 ax-mulass 7917 ax-distr 7918 ax-i2m1 7919 ax-0lt1 7920 ax-1rid 7921 ax-0id 7922 ax-rnegex 7923 ax-precex 7924 ax-cnre 7925 ax-pre-ltirr 7926 ax-pre-ltwlin 7927 ax-pre-lttrn 7928 ax-pre-apti 7929 ax-pre-ltadd 7930 ax-pre-mulgt0 7931 ax-pre-mulext 7932 ax-arch 7933 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-po 4298 df-iso 4299 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-riota 5834 df-ov 5881 df-oprab 5882 df-mpo 5883 df-1st 6144 df-2nd 6145 df-pnf 7997 df-mnf 7998 df-xr 7999 df-ltxr 8000 df-le 8001 df-sub 8133 df-neg 8134 df-reap 8535 df-ap 8542 df-div 8633 df-inn 8923 df-n0 9180 df-z 9257 df-q 9623 df-rp 9657 df-fl 10273 df-mod 10326 |
This theorem is referenced by: m1modge3gt1 10374 |
Copyright terms: Public domain | W3C validator |