Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > m1modnnsub1 | GIF version |
Description: Minus one modulo a positive integer is equal to the integer minus one. (Contributed by AV, 14-Jul-2021.) |
Ref | Expression |
---|---|
m1modnnsub1 | ⊢ (𝑀 ∈ ℕ → (-1 mod 𝑀) = (𝑀 − 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1z 9187 | . . . 4 ⊢ 1 ∈ ℤ | |
2 | zq 9528 | . . . 4 ⊢ (1 ∈ ℤ → 1 ∈ ℚ) | |
3 | 1, 2 | mp1i 10 | . . 3 ⊢ (𝑀 ∈ ℕ → 1 ∈ ℚ) |
4 | nnq 9535 | . . 3 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℚ) | |
5 | nngt0 8852 | . . 3 ⊢ (𝑀 ∈ ℕ → 0 < 𝑀) | |
6 | qnegmod 10261 | . . 3 ⊢ ((1 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → (-1 mod 𝑀) = ((𝑀 − 1) mod 𝑀)) | |
7 | 3, 4, 5, 6 | syl3anc 1220 | . 2 ⊢ (𝑀 ∈ ℕ → (-1 mod 𝑀) = ((𝑀 − 1) mod 𝑀)) |
8 | qsubcl 9540 | . . . 4 ⊢ ((𝑀 ∈ ℚ ∧ 1 ∈ ℚ) → (𝑀 − 1) ∈ ℚ) | |
9 | 4, 3, 8 | syl2anc 409 | . . 3 ⊢ (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℚ) |
10 | nnm1ge0 9244 | . . 3 ⊢ (𝑀 ∈ ℕ → 0 ≤ (𝑀 − 1)) | |
11 | nnre 8834 | . . . 4 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℝ) | |
12 | 11 | ltm1d 8797 | . . 3 ⊢ (𝑀 ∈ ℕ → (𝑀 − 1) < 𝑀) |
13 | modqid 10241 | . . 3 ⊢ ((((𝑀 − 1) ∈ ℚ ∧ 𝑀 ∈ ℚ) ∧ (0 ≤ (𝑀 − 1) ∧ (𝑀 − 1) < 𝑀)) → ((𝑀 − 1) mod 𝑀) = (𝑀 − 1)) | |
14 | 9, 4, 10, 12, 13 | syl22anc 1221 | . 2 ⊢ (𝑀 ∈ ℕ → ((𝑀 − 1) mod 𝑀) = (𝑀 − 1)) |
15 | 7, 14 | eqtrd 2190 | 1 ⊢ (𝑀 ∈ ℕ → (-1 mod 𝑀) = (𝑀 − 1)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1335 ∈ wcel 2128 class class class wbr 3965 (class class class)co 5821 0cc0 7726 1c1 7727 < clt 7906 ≤ cle 7907 − cmin 8040 -cneg 8041 ℕcn 8827 ℤcz 9161 ℚcq 9521 mod cmo 10214 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-cnex 7817 ax-resscn 7818 ax-1cn 7819 ax-1re 7820 ax-icn 7821 ax-addcl 7822 ax-addrcl 7823 ax-mulcl 7824 ax-mulrcl 7825 ax-addcom 7826 ax-mulcom 7827 ax-addass 7828 ax-mulass 7829 ax-distr 7830 ax-i2m1 7831 ax-0lt1 7832 ax-1rid 7833 ax-0id 7834 ax-rnegex 7835 ax-precex 7836 ax-cnre 7837 ax-pre-ltirr 7838 ax-pre-ltwlin 7839 ax-pre-lttrn 7840 ax-pre-apti 7841 ax-pre-ltadd 7842 ax-pre-mulgt0 7843 ax-pre-mulext 7844 ax-arch 7845 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4253 df-po 4256 df-iso 4257 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-fv 5177 df-riota 5777 df-ov 5824 df-oprab 5825 df-mpo 5826 df-1st 6085 df-2nd 6086 df-pnf 7908 df-mnf 7909 df-xr 7910 df-ltxr 7911 df-le 7912 df-sub 8042 df-neg 8043 df-reap 8444 df-ap 8451 df-div 8540 df-inn 8828 df-n0 9085 df-z 9162 df-q 9522 df-rp 9554 df-fl 10162 df-mod 10215 |
This theorem is referenced by: m1modge3gt1 10263 |
Copyright terms: Public domain | W3C validator |