| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gausslemma2dlem0c | GIF version | ||
| Description: Auxiliary lemma 3 for gausslemma2d 15733. (Contributed by AV, 13-Jul-2021.) |
| Ref | Expression |
|---|---|
| gausslemma2dlem0a.p | ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) |
| gausslemma2dlem0b.h | ⊢ 𝐻 = ((𝑃 − 1) / 2) |
| Ref | Expression |
|---|---|
| gausslemma2dlem0c | ⊢ (𝜑 → ((!‘𝐻) gcd 𝑃) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gausslemma2dlem0a.p | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) | |
| 2 | eldifi 3326 | . . . . 5 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ) | |
| 3 | 1, 2 | syl 14 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ ℙ) |
| 4 | gausslemma2dlem0b.h | . . . . . 6 ⊢ 𝐻 = ((𝑃 − 1) / 2) | |
| 5 | 1, 4 | gausslemma2dlem0b 15714 | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ ℕ) |
| 6 | 5 | nnnn0d 9410 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ ℕ0) |
| 7 | 3, 6 | jca 306 | . . 3 ⊢ (𝜑 → (𝑃 ∈ ℙ ∧ 𝐻 ∈ ℕ0)) |
| 8 | prmnn 12618 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 9 | nnre 9105 | . . . . . . . 8 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℝ) | |
| 10 | peano2rem 8401 | . . . . . . . 8 ⊢ (𝑃 ∈ ℝ → (𝑃 − 1) ∈ ℝ) | |
| 11 | 9, 10 | syl 14 | . . . . . . 7 ⊢ (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℝ) |
| 12 | 2re 9168 | . . . . . . . . 9 ⊢ 2 ∈ ℝ | |
| 13 | 12 | a1i 9 | . . . . . . . 8 ⊢ (𝑃 ∈ ℕ → 2 ∈ ℝ) |
| 14 | 13, 9 | remulcld 8165 | . . . . . . 7 ⊢ (𝑃 ∈ ℕ → (2 · 𝑃) ∈ ℝ) |
| 15 | 9 | ltm1d 9067 | . . . . . . 7 ⊢ (𝑃 ∈ ℕ → (𝑃 − 1) < 𝑃) |
| 16 | nnnn0 9364 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0) | |
| 17 | 16 | nn0ge0d 9413 | . . . . . . . 8 ⊢ (𝑃 ∈ ℕ → 0 ≤ 𝑃) |
| 18 | 1le2 9307 | . . . . . . . . 9 ⊢ 1 ≤ 2 | |
| 19 | 18 | a1i 9 | . . . . . . . 8 ⊢ (𝑃 ∈ ℕ → 1 ≤ 2) |
| 20 | 9, 13, 17, 19 | lemulge12d 9073 | . . . . . . 7 ⊢ (𝑃 ∈ ℕ → 𝑃 ≤ (2 · 𝑃)) |
| 21 | 11, 9, 14, 15, 20 | ltletrd 8558 | . . . . . 6 ⊢ (𝑃 ∈ ℕ → (𝑃 − 1) < (2 · 𝑃)) |
| 22 | 2pos 9189 | . . . . . . . . 9 ⊢ 0 < 2 | |
| 23 | 12, 22 | pm3.2i 272 | . . . . . . . 8 ⊢ (2 ∈ ℝ ∧ 0 < 2) |
| 24 | 23 | a1i 9 | . . . . . . 7 ⊢ (𝑃 ∈ ℕ → (2 ∈ ℝ ∧ 0 < 2)) |
| 25 | ltdivmul 9011 | . . . . . . 7 ⊢ (((𝑃 − 1) ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((𝑃 − 1) / 2) < 𝑃 ↔ (𝑃 − 1) < (2 · 𝑃))) | |
| 26 | 11, 9, 24, 25 | syl3anc 1271 | . . . . . 6 ⊢ (𝑃 ∈ ℕ → (((𝑃 − 1) / 2) < 𝑃 ↔ (𝑃 − 1) < (2 · 𝑃))) |
| 27 | 21, 26 | mpbird 167 | . . . . 5 ⊢ (𝑃 ∈ ℕ → ((𝑃 − 1) / 2) < 𝑃) |
| 28 | 1, 2, 8, 27 | 4syl 18 | . . . 4 ⊢ (𝜑 → ((𝑃 − 1) / 2) < 𝑃) |
| 29 | 4, 28 | eqbrtrid 4117 | . . 3 ⊢ (𝜑 → 𝐻 < 𝑃) |
| 30 | prmndvdsfaclt 12664 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐻 ∈ ℕ0) → (𝐻 < 𝑃 → ¬ 𝑃 ∥ (!‘𝐻))) | |
| 31 | 7, 29, 30 | sylc 62 | . 2 ⊢ (𝜑 → ¬ 𝑃 ∥ (!‘𝐻)) |
| 32 | 6 | faccld 10945 | . . . . . 6 ⊢ (𝜑 → (!‘𝐻) ∈ ℕ) |
| 33 | 32 | nnzd 9556 | . . . . 5 ⊢ (𝜑 → (!‘𝐻) ∈ ℤ) |
| 34 | nnz 9453 | . . . . . 6 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℤ) | |
| 35 | 1, 2, 8, 34 | 4syl 18 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℤ) |
| 36 | 33, 35 | gcdcomd 12481 | . . . 4 ⊢ (𝜑 → ((!‘𝐻) gcd 𝑃) = (𝑃 gcd (!‘𝐻))) |
| 37 | 36 | eqeq1d 2238 | . . 3 ⊢ (𝜑 → (((!‘𝐻) gcd 𝑃) = 1 ↔ (𝑃 gcd (!‘𝐻)) = 1)) |
| 38 | coprm 12652 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ (!‘𝐻) ∈ ℤ) → (¬ 𝑃 ∥ (!‘𝐻) ↔ (𝑃 gcd (!‘𝐻)) = 1)) | |
| 39 | 3, 33, 38 | syl2anc 411 | . . 3 ⊢ (𝜑 → (¬ 𝑃 ∥ (!‘𝐻) ↔ (𝑃 gcd (!‘𝐻)) = 1)) |
| 40 | 37, 39 | bitr4d 191 | . 2 ⊢ (𝜑 → (((!‘𝐻) gcd 𝑃) = 1 ↔ ¬ 𝑃 ∥ (!‘𝐻))) |
| 41 | 31, 40 | mpbird 167 | 1 ⊢ (𝜑 → ((!‘𝐻) gcd 𝑃) = 1) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ∖ cdif 3194 {csn 3666 class class class wbr 4082 ‘cfv 5314 (class class class)co 5994 ℝcr 7986 0cc0 7987 1c1 7988 · cmul 7992 < clt 8169 ≤ cle 8170 − cmin 8305 / cdiv 8807 ℕcn 9098 2c2 9149 ℕ0cn0 9357 ℤcz 9434 !cfa 10934 ∥ cdvds 12284 gcd cgcd 12460 ℙcprime 12615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-pre-mulext 8105 ax-arch 8106 ax-caucvg 8107 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-xor 1418 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-frec 6527 df-1o 6552 df-2o 6553 df-er 6670 df-en 6878 df-sup 7139 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-div 8808 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-n0 9358 df-z 9435 df-uz 9711 df-q 9803 df-rp 9838 df-fz 10193 df-fzo 10327 df-fl 10477 df-mod 10532 df-seqfrec 10657 df-exp 10748 df-fac 10935 df-cj 11339 df-re 11340 df-im 11341 df-rsqrt 11495 df-abs 11496 df-dvds 12285 df-gcd 12461 df-prm 12616 |
| This theorem is referenced by: gausslemma2dlem7 15732 |
| Copyright terms: Public domain | W3C validator |