| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gausslemma2dlem0c | GIF version | ||
| Description: Auxiliary lemma 3 for gausslemma2d 15756. (Contributed by AV, 13-Jul-2021.) |
| Ref | Expression |
|---|---|
| gausslemma2dlem0a.p | ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) |
| gausslemma2dlem0b.h | ⊢ 𝐻 = ((𝑃 − 1) / 2) |
| Ref | Expression |
|---|---|
| gausslemma2dlem0c | ⊢ (𝜑 → ((!‘𝐻) gcd 𝑃) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gausslemma2dlem0a.p | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) | |
| 2 | eldifi 3326 | . . . . 5 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ) | |
| 3 | 1, 2 | syl 14 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ ℙ) |
| 4 | gausslemma2dlem0b.h | . . . . . 6 ⊢ 𝐻 = ((𝑃 − 1) / 2) | |
| 5 | 1, 4 | gausslemma2dlem0b 15737 | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ ℕ) |
| 6 | 5 | nnnn0d 9430 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ ℕ0) |
| 7 | 3, 6 | jca 306 | . . 3 ⊢ (𝜑 → (𝑃 ∈ ℙ ∧ 𝐻 ∈ ℕ0)) |
| 8 | prmnn 12640 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 9 | nnre 9125 | . . . . . . . 8 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℝ) | |
| 10 | peano2rem 8421 | . . . . . . . 8 ⊢ (𝑃 ∈ ℝ → (𝑃 − 1) ∈ ℝ) | |
| 11 | 9, 10 | syl 14 | . . . . . . 7 ⊢ (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℝ) |
| 12 | 2re 9188 | . . . . . . . . 9 ⊢ 2 ∈ ℝ | |
| 13 | 12 | a1i 9 | . . . . . . . 8 ⊢ (𝑃 ∈ ℕ → 2 ∈ ℝ) |
| 14 | 13, 9 | remulcld 8185 | . . . . . . 7 ⊢ (𝑃 ∈ ℕ → (2 · 𝑃) ∈ ℝ) |
| 15 | 9 | ltm1d 9087 | . . . . . . 7 ⊢ (𝑃 ∈ ℕ → (𝑃 − 1) < 𝑃) |
| 16 | nnnn0 9384 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0) | |
| 17 | 16 | nn0ge0d 9433 | . . . . . . . 8 ⊢ (𝑃 ∈ ℕ → 0 ≤ 𝑃) |
| 18 | 1le2 9327 | . . . . . . . . 9 ⊢ 1 ≤ 2 | |
| 19 | 18 | a1i 9 | . . . . . . . 8 ⊢ (𝑃 ∈ ℕ → 1 ≤ 2) |
| 20 | 9, 13, 17, 19 | lemulge12d 9093 | . . . . . . 7 ⊢ (𝑃 ∈ ℕ → 𝑃 ≤ (2 · 𝑃)) |
| 21 | 11, 9, 14, 15, 20 | ltletrd 8578 | . . . . . 6 ⊢ (𝑃 ∈ ℕ → (𝑃 − 1) < (2 · 𝑃)) |
| 22 | 2pos 9209 | . . . . . . . . 9 ⊢ 0 < 2 | |
| 23 | 12, 22 | pm3.2i 272 | . . . . . . . 8 ⊢ (2 ∈ ℝ ∧ 0 < 2) |
| 24 | 23 | a1i 9 | . . . . . . 7 ⊢ (𝑃 ∈ ℕ → (2 ∈ ℝ ∧ 0 < 2)) |
| 25 | ltdivmul 9031 | . . . . . . 7 ⊢ (((𝑃 − 1) ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((𝑃 − 1) / 2) < 𝑃 ↔ (𝑃 − 1) < (2 · 𝑃))) | |
| 26 | 11, 9, 24, 25 | syl3anc 1271 | . . . . . 6 ⊢ (𝑃 ∈ ℕ → (((𝑃 − 1) / 2) < 𝑃 ↔ (𝑃 − 1) < (2 · 𝑃))) |
| 27 | 21, 26 | mpbird 167 | . . . . 5 ⊢ (𝑃 ∈ ℕ → ((𝑃 − 1) / 2) < 𝑃) |
| 28 | 1, 2, 8, 27 | 4syl 18 | . . . 4 ⊢ (𝜑 → ((𝑃 − 1) / 2) < 𝑃) |
| 29 | 4, 28 | eqbrtrid 4118 | . . 3 ⊢ (𝜑 → 𝐻 < 𝑃) |
| 30 | prmndvdsfaclt 12686 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐻 ∈ ℕ0) → (𝐻 < 𝑃 → ¬ 𝑃 ∥ (!‘𝐻))) | |
| 31 | 7, 29, 30 | sylc 62 | . 2 ⊢ (𝜑 → ¬ 𝑃 ∥ (!‘𝐻)) |
| 32 | 6 | faccld 10966 | . . . . . 6 ⊢ (𝜑 → (!‘𝐻) ∈ ℕ) |
| 33 | 32 | nnzd 9576 | . . . . 5 ⊢ (𝜑 → (!‘𝐻) ∈ ℤ) |
| 34 | nnz 9473 | . . . . . 6 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℤ) | |
| 35 | 1, 2, 8, 34 | 4syl 18 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℤ) |
| 36 | 33, 35 | gcdcomd 12503 | . . . 4 ⊢ (𝜑 → ((!‘𝐻) gcd 𝑃) = (𝑃 gcd (!‘𝐻))) |
| 37 | 36 | eqeq1d 2238 | . . 3 ⊢ (𝜑 → (((!‘𝐻) gcd 𝑃) = 1 ↔ (𝑃 gcd (!‘𝐻)) = 1)) |
| 38 | coprm 12674 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ (!‘𝐻) ∈ ℤ) → (¬ 𝑃 ∥ (!‘𝐻) ↔ (𝑃 gcd (!‘𝐻)) = 1)) | |
| 39 | 3, 33, 38 | syl2anc 411 | . . 3 ⊢ (𝜑 → (¬ 𝑃 ∥ (!‘𝐻) ↔ (𝑃 gcd (!‘𝐻)) = 1)) |
| 40 | 37, 39 | bitr4d 191 | . 2 ⊢ (𝜑 → (((!‘𝐻) gcd 𝑃) = 1 ↔ ¬ 𝑃 ∥ (!‘𝐻))) |
| 41 | 31, 40 | mpbird 167 | 1 ⊢ (𝜑 → ((!‘𝐻) gcd 𝑃) = 1) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ∖ cdif 3194 {csn 3666 class class class wbr 4083 ‘cfv 5318 (class class class)co 6007 ℝcr 8006 0cc0 8007 1c1 8008 · cmul 8012 < clt 8189 ≤ cle 8190 − cmin 8325 / cdiv 8827 ℕcn 9118 2c2 9169 ℕ0cn0 9377 ℤcz 9454 !cfa 10955 ∥ cdvds 12306 gcd cgcd 12482 ℙcprime 12637 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 ax-caucvg 8127 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-xor 1418 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-1o 6568 df-2o 6569 df-er 6688 df-en 6896 df-sup 7159 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-n0 9378 df-z 9455 df-uz 9731 df-q 9823 df-rp 9858 df-fz 10213 df-fzo 10347 df-fl 10498 df-mod 10553 df-seqfrec 10678 df-exp 10769 df-fac 10956 df-cj 11361 df-re 11362 df-im 11363 df-rsqrt 11517 df-abs 11518 df-dvds 12307 df-gcd 12483 df-prm 12638 |
| This theorem is referenced by: gausslemma2dlem7 15755 |
| Copyright terms: Public domain | W3C validator |