| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hovera | GIF version | ||
| Description: A point at which the hover function is less than a given value. (Contributed by Jim Kingdon, 21-Jul-2025.) |
| Ref | Expression |
|---|---|
| hover.f | ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < )) |
| Ref | Expression |
|---|---|
| hovera | ⊢ (𝑍 ∈ ℝ → (𝐹‘(𝑍 − 1)) < 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hover.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < )) | |
| 2 | preq1 3720 | . . . . . 6 ⊢ (𝑥 = (𝑍 − 1) → {𝑥, 0} = {(𝑍 − 1), 0}) | |
| 3 | 2 | infeq1d 7140 | . . . . 5 ⊢ (𝑥 = (𝑍 − 1) → inf({𝑥, 0}, ℝ, < ) = inf({(𝑍 − 1), 0}, ℝ, < )) |
| 4 | oveq1 5974 | . . . . 5 ⊢ (𝑥 = (𝑍 − 1) → (𝑥 − 1) = ((𝑍 − 1) − 1)) | |
| 5 | 3, 4 | preq12d 3728 | . . . 4 ⊢ (𝑥 = (𝑍 − 1) → {inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)} = {inf({(𝑍 − 1), 0}, ℝ, < ), ((𝑍 − 1) − 1)}) |
| 6 | 5 | supeq1d 7115 | . . 3 ⊢ (𝑥 = (𝑍 − 1) → sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < ) = sup({inf({(𝑍 − 1), 0}, ℝ, < ), ((𝑍 − 1) − 1)}, ℝ, < )) |
| 7 | peano2rem 8374 | . . 3 ⊢ (𝑍 ∈ ℝ → (𝑍 − 1) ∈ ℝ) | |
| 8 | 0red 8108 | . . . . 5 ⊢ (𝑍 ∈ ℝ → 0 ∈ ℝ) | |
| 9 | mincl 11657 | . . . . 5 ⊢ (((𝑍 − 1) ∈ ℝ ∧ 0 ∈ ℝ) → inf({(𝑍 − 1), 0}, ℝ, < ) ∈ ℝ) | |
| 10 | 7, 8, 9 | syl2anc 411 | . . . 4 ⊢ (𝑍 ∈ ℝ → inf({(𝑍 − 1), 0}, ℝ, < ) ∈ ℝ) |
| 11 | peano2rem 8374 | . . . . 5 ⊢ ((𝑍 − 1) ∈ ℝ → ((𝑍 − 1) − 1) ∈ ℝ) | |
| 12 | 7, 11 | syl 14 | . . . 4 ⊢ (𝑍 ∈ ℝ → ((𝑍 − 1) − 1) ∈ ℝ) |
| 13 | maxcl 11636 | . . . 4 ⊢ ((inf({(𝑍 − 1), 0}, ℝ, < ) ∈ ℝ ∧ ((𝑍 − 1) − 1) ∈ ℝ) → sup({inf({(𝑍 − 1), 0}, ℝ, < ), ((𝑍 − 1) − 1)}, ℝ, < ) ∈ ℝ) | |
| 14 | 10, 12, 13 | syl2anc 411 | . . 3 ⊢ (𝑍 ∈ ℝ → sup({inf({(𝑍 − 1), 0}, ℝ, < ), ((𝑍 − 1) − 1)}, ℝ, < ) ∈ ℝ) |
| 15 | 1, 6, 7, 14 | fvmptd3 5696 | . 2 ⊢ (𝑍 ∈ ℝ → (𝐹‘(𝑍 − 1)) = sup({inf({(𝑍 − 1), 0}, ℝ, < ), ((𝑍 − 1) − 1)}, ℝ, < )) |
| 16 | id 19 | . . . 4 ⊢ (𝑍 ∈ ℝ → 𝑍 ∈ ℝ) | |
| 17 | 0re 8107 | . . . . 5 ⊢ 0 ∈ ℝ | |
| 18 | min1inf 11658 | . . . . 5 ⊢ (((𝑍 − 1) ∈ ℝ ∧ 0 ∈ ℝ) → inf({(𝑍 − 1), 0}, ℝ, < ) ≤ (𝑍 − 1)) | |
| 19 | 7, 17, 18 | sylancl 413 | . . . 4 ⊢ (𝑍 ∈ ℝ → inf({(𝑍 − 1), 0}, ℝ, < ) ≤ (𝑍 − 1)) |
| 20 | ltm1 8954 | . . . 4 ⊢ (𝑍 ∈ ℝ → (𝑍 − 1) < 𝑍) | |
| 21 | 10, 7, 16, 19, 20 | lelttrd 8232 | . . 3 ⊢ (𝑍 ∈ ℝ → inf({(𝑍 − 1), 0}, ℝ, < ) < 𝑍) |
| 22 | 7 | ltm1d 9040 | . . . 4 ⊢ (𝑍 ∈ ℝ → ((𝑍 − 1) − 1) < (𝑍 − 1)) |
| 23 | 12, 7, 16, 22, 20 | lttrd 8233 | . . 3 ⊢ (𝑍 ∈ ℝ → ((𝑍 − 1) − 1) < 𝑍) |
| 24 | maxltsup 11644 | . . . 4 ⊢ ((inf({(𝑍 − 1), 0}, ℝ, < ) ∈ ℝ ∧ ((𝑍 − 1) − 1) ∈ ℝ ∧ 𝑍 ∈ ℝ) → (sup({inf({(𝑍 − 1), 0}, ℝ, < ), ((𝑍 − 1) − 1)}, ℝ, < ) < 𝑍 ↔ (inf({(𝑍 − 1), 0}, ℝ, < ) < 𝑍 ∧ ((𝑍 − 1) − 1) < 𝑍))) | |
| 25 | 10, 12, 16, 24 | syl3anc 1250 | . . 3 ⊢ (𝑍 ∈ ℝ → (sup({inf({(𝑍 − 1), 0}, ℝ, < ), ((𝑍 − 1) − 1)}, ℝ, < ) < 𝑍 ↔ (inf({(𝑍 − 1), 0}, ℝ, < ) < 𝑍 ∧ ((𝑍 − 1) − 1) < 𝑍))) |
| 26 | 21, 23, 25 | mpbir2and 947 | . 2 ⊢ (𝑍 ∈ ℝ → sup({inf({(𝑍 − 1), 0}, ℝ, < ), ((𝑍 − 1) − 1)}, ℝ, < ) < 𝑍) |
| 27 | 15, 26 | eqbrtrd 4081 | 1 ⊢ (𝑍 ∈ ℝ → (𝐹‘(𝑍 − 1)) < 𝑍) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2178 {cpr 3644 class class class wbr 4059 ↦ cmpt 4121 ‘cfv 5290 (class class class)co 5967 supcsup 7110 infcinf 7111 ℝcr 7959 0cc0 7960 1c1 7961 < clt 8142 ≤ cle 8143 − cmin 8278 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-sup 7112 df-inf 7113 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-n0 9331 df-z 9408 df-uz 9684 df-rp 9811 df-seqfrec 10630 df-exp 10721 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 |
| This theorem is referenced by: ivthdichlem 15238 |
| Copyright terms: Public domain | W3C validator |