![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > hovera | GIF version |
Description: A point at which the hover function is less than a given value. (Contributed by Jim Kingdon, 21-Jul-2025.) |
Ref | Expression |
---|---|
hover.f | ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < )) |
Ref | Expression |
---|---|
hovera | ⊢ (𝑍 ∈ ℝ → (𝐹‘(𝑍 − 1)) < 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hover.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < )) | |
2 | preq1 3695 | . . . . . 6 ⊢ (𝑥 = (𝑍 − 1) → {𝑥, 0} = {(𝑍 − 1), 0}) | |
3 | 2 | infeq1d 7071 | . . . . 5 ⊢ (𝑥 = (𝑍 − 1) → inf({𝑥, 0}, ℝ, < ) = inf({(𝑍 − 1), 0}, ℝ, < )) |
4 | oveq1 5925 | . . . . 5 ⊢ (𝑥 = (𝑍 − 1) → (𝑥 − 1) = ((𝑍 − 1) − 1)) | |
5 | 3, 4 | preq12d 3703 | . . . 4 ⊢ (𝑥 = (𝑍 − 1) → {inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)} = {inf({(𝑍 − 1), 0}, ℝ, < ), ((𝑍 − 1) − 1)}) |
6 | 5 | supeq1d 7046 | . . 3 ⊢ (𝑥 = (𝑍 − 1) → sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < ) = sup({inf({(𝑍 − 1), 0}, ℝ, < ), ((𝑍 − 1) − 1)}, ℝ, < )) |
7 | peano2rem 8286 | . . 3 ⊢ (𝑍 ∈ ℝ → (𝑍 − 1) ∈ ℝ) | |
8 | 0red 8020 | . . . . 5 ⊢ (𝑍 ∈ ℝ → 0 ∈ ℝ) | |
9 | mincl 11374 | . . . . 5 ⊢ (((𝑍 − 1) ∈ ℝ ∧ 0 ∈ ℝ) → inf({(𝑍 − 1), 0}, ℝ, < ) ∈ ℝ) | |
10 | 7, 8, 9 | syl2anc 411 | . . . 4 ⊢ (𝑍 ∈ ℝ → inf({(𝑍 − 1), 0}, ℝ, < ) ∈ ℝ) |
11 | peano2rem 8286 | . . . . 5 ⊢ ((𝑍 − 1) ∈ ℝ → ((𝑍 − 1) − 1) ∈ ℝ) | |
12 | 7, 11 | syl 14 | . . . 4 ⊢ (𝑍 ∈ ℝ → ((𝑍 − 1) − 1) ∈ ℝ) |
13 | maxcl 11354 | . . . 4 ⊢ ((inf({(𝑍 − 1), 0}, ℝ, < ) ∈ ℝ ∧ ((𝑍 − 1) − 1) ∈ ℝ) → sup({inf({(𝑍 − 1), 0}, ℝ, < ), ((𝑍 − 1) − 1)}, ℝ, < ) ∈ ℝ) | |
14 | 10, 12, 13 | syl2anc 411 | . . 3 ⊢ (𝑍 ∈ ℝ → sup({inf({(𝑍 − 1), 0}, ℝ, < ), ((𝑍 − 1) − 1)}, ℝ, < ) ∈ ℝ) |
15 | 1, 6, 7, 14 | fvmptd3 5651 | . 2 ⊢ (𝑍 ∈ ℝ → (𝐹‘(𝑍 − 1)) = sup({inf({(𝑍 − 1), 0}, ℝ, < ), ((𝑍 − 1) − 1)}, ℝ, < )) |
16 | id 19 | . . . 4 ⊢ (𝑍 ∈ ℝ → 𝑍 ∈ ℝ) | |
17 | 0re 8019 | . . . . 5 ⊢ 0 ∈ ℝ | |
18 | min1inf 11375 | . . . . 5 ⊢ (((𝑍 − 1) ∈ ℝ ∧ 0 ∈ ℝ) → inf({(𝑍 − 1), 0}, ℝ, < ) ≤ (𝑍 − 1)) | |
19 | 7, 17, 18 | sylancl 413 | . . . 4 ⊢ (𝑍 ∈ ℝ → inf({(𝑍 − 1), 0}, ℝ, < ) ≤ (𝑍 − 1)) |
20 | ltm1 8865 | . . . 4 ⊢ (𝑍 ∈ ℝ → (𝑍 − 1) < 𝑍) | |
21 | 10, 7, 16, 19, 20 | lelttrd 8144 | . . 3 ⊢ (𝑍 ∈ ℝ → inf({(𝑍 − 1), 0}, ℝ, < ) < 𝑍) |
22 | 7 | ltm1d 8951 | . . . 4 ⊢ (𝑍 ∈ ℝ → ((𝑍 − 1) − 1) < (𝑍 − 1)) |
23 | 12, 7, 16, 22, 20 | lttrd 8145 | . . 3 ⊢ (𝑍 ∈ ℝ → ((𝑍 − 1) − 1) < 𝑍) |
24 | maxltsup 11362 | . . . 4 ⊢ ((inf({(𝑍 − 1), 0}, ℝ, < ) ∈ ℝ ∧ ((𝑍 − 1) − 1) ∈ ℝ ∧ 𝑍 ∈ ℝ) → (sup({inf({(𝑍 − 1), 0}, ℝ, < ), ((𝑍 − 1) − 1)}, ℝ, < ) < 𝑍 ↔ (inf({(𝑍 − 1), 0}, ℝ, < ) < 𝑍 ∧ ((𝑍 − 1) − 1) < 𝑍))) | |
25 | 10, 12, 16, 24 | syl3anc 1249 | . . 3 ⊢ (𝑍 ∈ ℝ → (sup({inf({(𝑍 − 1), 0}, ℝ, < ), ((𝑍 − 1) − 1)}, ℝ, < ) < 𝑍 ↔ (inf({(𝑍 − 1), 0}, ℝ, < ) < 𝑍 ∧ ((𝑍 − 1) − 1) < 𝑍))) |
26 | 21, 23, 25 | mpbir2and 946 | . 2 ⊢ (𝑍 ∈ ℝ → sup({inf({(𝑍 − 1), 0}, ℝ, < ), ((𝑍 − 1) − 1)}, ℝ, < ) < 𝑍) |
27 | 15, 26 | eqbrtrd 4051 | 1 ⊢ (𝑍 ∈ ℝ → (𝐹‘(𝑍 − 1)) < 𝑍) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 {cpr 3619 class class class wbr 4029 ↦ cmpt 4090 ‘cfv 5254 (class class class)co 5918 supcsup 7041 infcinf 7042 ℝcr 7871 0cc0 7872 1c1 7873 < clt 8054 ≤ cle 8055 − cmin 8190 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 ax-arch 7991 ax-caucvg 7992 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-isom 5263 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-frec 6444 df-sup 7043 df-inf 7044 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-n0 9241 df-z 9318 df-uz 9593 df-rp 9720 df-seqfrec 10519 df-exp 10610 df-cj 10986 df-re 10987 df-im 10988 df-rsqrt 11142 df-abs 11143 |
This theorem is referenced by: ivthdichlem 14805 |
Copyright terms: Public domain | W3C validator |