ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iddvdsexp GIF version

Theorem iddvdsexp 11790
Description: An integer divides a positive integer power of itself. (Contributed by Paul Chapman, 26-Oct-2012.)
Assertion
Ref Expression
iddvdsexp ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑀 ∥ (𝑀𝑁))

Proof of Theorem iddvdsexp
StepHypRef Expression
1 nnm1nn0 9190 . . . 4 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
2 zexpcl 10505 . . . 4 ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℕ0) → (𝑀↑(𝑁 − 1)) ∈ ℤ)
31, 2sylan2 286 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀↑(𝑁 − 1)) ∈ ℤ)
4 simpl 109 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℤ)
5 dvdsmul2 11789 . . 3 (((𝑀↑(𝑁 − 1)) ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑀 ∥ ((𝑀↑(𝑁 − 1)) · 𝑀))
63, 4, 5syl2anc 411 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑀 ∥ ((𝑀↑(𝑁 − 1)) · 𝑀))
7 zcn 9231 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
8 expm1t 10518 . . 3 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝑀𝑁) = ((𝑀↑(𝑁 − 1)) · 𝑀))
97, 8sylan 283 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀𝑁) = ((𝑀↑(𝑁 − 1)) · 𝑀))
106, 9breqtrrd 4026 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑀 ∥ (𝑀𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2146   class class class wbr 3998  (class class class)co 5865  cc 7784  1c1 7787   · cmul 7791  cmin 8102  cn 8892  0cn0 9149  cz 9226  cexp 10489  cdvds 11762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-frec 6382  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8603  df-inn 8893  df-n0 9150  df-z 9227  df-uz 9502  df-seqfrec 10416  df-exp 10490  df-dvds 11763
This theorem is referenced by:  prmexpb  12118  rpexp  12120  difsqpwdvds  12304  pockthlem  12321
  Copyright terms: Public domain W3C validator