ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringmneg1 GIF version

Theorem ringmneg1 13552
Description: Negation of a product in a ring. (mulneg1 8416 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
Hypotheses
Ref Expression
ringneglmul.b 𝐵 = (Base‘𝑅)
ringneglmul.t · = (.r𝑅)
ringneglmul.n 𝑁 = (invg𝑅)
ringneglmul.r (𝜑𝑅 ∈ Ring)
ringneglmul.x (𝜑𝑋𝐵)
ringneglmul.y (𝜑𝑌𝐵)
Assertion
Ref Expression
ringmneg1 (𝜑 → ((𝑁𝑋) · 𝑌) = (𝑁‘(𝑋 · 𝑌)))

Proof of Theorem ringmneg1
StepHypRef Expression
1 ringneglmul.r . . 3 (𝜑𝑅 ∈ Ring)
2 ringgrp 13500 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
31, 2syl 14 . . . 4 (𝜑𝑅 ∈ Grp)
4 ringneglmul.b . . . . . 6 𝐵 = (Base‘𝑅)
5 eqid 2193 . . . . . 6 (1r𝑅) = (1r𝑅)
64, 5ringidcl 13519 . . . . 5 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
71, 6syl 14 . . . 4 (𝜑 → (1r𝑅) ∈ 𝐵)
8 ringneglmul.n . . . . 5 𝑁 = (invg𝑅)
94, 8grpinvcl 13123 . . . 4 ((𝑅 ∈ Grp ∧ (1r𝑅) ∈ 𝐵) → (𝑁‘(1r𝑅)) ∈ 𝐵)
103, 7, 9syl2anc 411 . . 3 (𝜑 → (𝑁‘(1r𝑅)) ∈ 𝐵)
11 ringneglmul.x . . 3 (𝜑𝑋𝐵)
12 ringneglmul.y . . 3 (𝜑𝑌𝐵)
13 ringneglmul.t . . . 4 · = (.r𝑅)
144, 13ringass 13515 . . 3 ((𝑅 ∈ Ring ∧ ((𝑁‘(1r𝑅)) ∈ 𝐵𝑋𝐵𝑌𝐵)) → (((𝑁‘(1r𝑅)) · 𝑋) · 𝑌) = ((𝑁‘(1r𝑅)) · (𝑋 · 𝑌)))
151, 10, 11, 12, 14syl13anc 1251 . 2 (𝜑 → (((𝑁‘(1r𝑅)) · 𝑋) · 𝑌) = ((𝑁‘(1r𝑅)) · (𝑋 · 𝑌)))
164, 13, 5, 8, 1, 11ringnegl 13550 . . 3 (𝜑 → ((𝑁‘(1r𝑅)) · 𝑋) = (𝑁𝑋))
1716oveq1d 5934 . 2 (𝜑 → (((𝑁‘(1r𝑅)) · 𝑋) · 𝑌) = ((𝑁𝑋) · 𝑌))
184, 13ringcl 13512 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) ∈ 𝐵)
191, 11, 12, 18syl3anc 1249 . . 3 (𝜑 → (𝑋 · 𝑌) ∈ 𝐵)
204, 13, 5, 8, 1, 19ringnegl 13550 . 2 (𝜑 → ((𝑁‘(1r𝑅)) · (𝑋 · 𝑌)) = (𝑁‘(𝑋 · 𝑌)))
2115, 17, 203eqtr3d 2234 1 (𝜑 → ((𝑁𝑋) · 𝑌) = (𝑁‘(𝑋 · 𝑌)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  cfv 5255  (class class class)co 5919  Basecbs 12621  .rcmulr 12699  Grpcgrp 13075  invgcminusg 13076  1rcur 13458  Ringcrg 13495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-plusg 12711  df-mulr 12712  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079  df-mgp 13420  df-ur 13459  df-ring 13497
This theorem is referenced by:  ringm2neg  13554  ringsubdir  13556  mulgass2  13557
  Copyright terms: Public domain W3C validator