| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ringmneg1 | GIF version | ||
| Description: Negation of a product in a ring. (mulneg1 8502 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) |
| Ref | Expression |
|---|---|
| ringneglmul.b | ⊢ 𝐵 = (Base‘𝑅) |
| ringneglmul.t | ⊢ · = (.r‘𝑅) |
| ringneglmul.n | ⊢ 𝑁 = (invg‘𝑅) |
| ringneglmul.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| ringneglmul.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ringneglmul.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ringmneg1 | ⊢ (𝜑 → ((𝑁‘𝑋) · 𝑌) = (𝑁‘(𝑋 · 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringneglmul.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | ringgrp 13878 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 3 | 1, 2 | syl 14 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 4 | ringneglmul.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 5 | eqid 2207 | . . . . . 6 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 6 | 4, 5 | ringidcl 13897 | . . . . 5 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝐵) |
| 7 | 1, 6 | syl 14 | . . . 4 ⊢ (𝜑 → (1r‘𝑅) ∈ 𝐵) |
| 8 | ringneglmul.n | . . . . 5 ⊢ 𝑁 = (invg‘𝑅) | |
| 9 | 4, 8 | grpinvcl 13495 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ (1r‘𝑅) ∈ 𝐵) → (𝑁‘(1r‘𝑅)) ∈ 𝐵) |
| 10 | 3, 7, 9 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝑁‘(1r‘𝑅)) ∈ 𝐵) |
| 11 | ringneglmul.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 12 | ringneglmul.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 13 | ringneglmul.t | . . . 4 ⊢ · = (.r‘𝑅) | |
| 14 | 4, 13 | ringass 13893 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ ((𝑁‘(1r‘𝑅)) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (((𝑁‘(1r‘𝑅)) · 𝑋) · 𝑌) = ((𝑁‘(1r‘𝑅)) · (𝑋 · 𝑌))) |
| 15 | 1, 10, 11, 12, 14 | syl13anc 1252 | . 2 ⊢ (𝜑 → (((𝑁‘(1r‘𝑅)) · 𝑋) · 𝑌) = ((𝑁‘(1r‘𝑅)) · (𝑋 · 𝑌))) |
| 16 | 4, 13, 5, 8, 1, 11 | ringnegl 13928 | . . 3 ⊢ (𝜑 → ((𝑁‘(1r‘𝑅)) · 𝑋) = (𝑁‘𝑋)) |
| 17 | 16 | oveq1d 5982 | . 2 ⊢ (𝜑 → (((𝑁‘(1r‘𝑅)) · 𝑋) · 𝑌) = ((𝑁‘𝑋) · 𝑌)) |
| 18 | 4, 13 | ringcl 13890 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) |
| 19 | 1, 11, 12, 18 | syl3anc 1250 | . . 3 ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐵) |
| 20 | 4, 13, 5, 8, 1, 19 | ringnegl 13928 | . 2 ⊢ (𝜑 → ((𝑁‘(1r‘𝑅)) · (𝑋 · 𝑌)) = (𝑁‘(𝑋 · 𝑌))) |
| 21 | 15, 17, 20 | 3eqtr3d 2248 | 1 ⊢ (𝜑 → ((𝑁‘𝑋) · 𝑌) = (𝑁‘(𝑋 · 𝑌))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2178 ‘cfv 5290 (class class class)co 5967 Basecbs 12947 .rcmulr 13025 Grpcgrp 13447 invgcminusg 13448 1rcur 13836 Ringcrg 13873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-pre-ltirr 8072 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-ltxr 8147 df-inn 9072 df-2 9130 df-3 9131 df-ndx 12950 df-slot 12951 df-base 12953 df-sets 12954 df-plusg 13037 df-mulr 13038 df-0g 13205 df-mgm 13303 df-sgrp 13349 df-mnd 13364 df-grp 13450 df-minusg 13451 df-mgp 13798 df-ur 13837 df-ring 13875 |
| This theorem is referenced by: ringm2neg 13932 ringsubdir 13934 mulgass2 13935 |
| Copyright terms: Public domain | W3C validator |